Sistem Pendukung Keputusan Dalam Menilai Tingkat Kecanduan Rokok Pada Masyarakat Menggunakan Algoritma Iterative Dichotomizer Three (Id3)

Diffa, Sarah (2024) Sistem Pendukung Keputusan Dalam Menilai Tingkat Kecanduan Rokok Pada Masyarakat Menggunakan Algoritma Iterative Dichotomizer Three (Id3). Undergraduate thesis, Politeknik Negeri Bengkalis.

[img] Text (Abstract)
1.TA-6304201309-Abstract.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (182kB)
[img] Text (Bab I Pendahuluan)
2.TA-6304201309-Bab I Pendahuluan.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (466kB)
[img] Text (Daftar Pustaka)
3.TA-6304201309-Daftar Pustaka.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (412kB)
[img] Text (Full Text)
4.TA-6304201309-Full Text.pdf - Submitted Version
Restricted to Registered users only
Available under License Creative Commons Attribution Share Alike.

Download (4MB) | Request a copy

Abstract

Nicotine addiction is a critical public health issue, as evidenced by 34.5% of adults in Indonesia being recorded as active smokers according to the Global Adult Tobacco Survey (GATS) 2021. This study aims to design and develop a decision support system for assessing the level of nicotine addiction in the community using the ID3 Algorithm.The system provides information related to the level of nicotine addiction among the community, enabling appropriate intervention efforts based on the category of addiction level. In the development of the system, the Iterative Dichotomizer Three (ID3) Algorithm was used.Based on the research results on nicotine addiction levels, the application testing results show that the accuracy of the nicotine addiction level test between the manual method and the system with 8 test data points achieved an accuracy of 87.50%, Recall of 91.67%, and precision of 91.67%. It can be concluded that the decision support system application using the ID3 Algorithm has been successful.

Item Type: Thesis (Undergraduate)
Contributors:
ContributionContributorsEmailNIDN/NIDK
Thesis advisorFiska, Ryci Rahmatilrycirf@polbeng.ac.idNIDN1011079101
Uncontrolled Keywords: Tobacco Addiction Level, Decision Support System, ID3 Algorithm
Subjects: 410 ILMU TEKNIK > 450 TEKNIK ELEKTRO DAN INFORMATIKA > 458 Teknik Informatika
Divisions: Jurusan Teknik Informatika > Sarjana Terapan Rekayasa Perangkat Lunak > TUGAS AKHIR
Depositing User: Rekayasa Perangkat Lunak C 2024
Date Deposited: 24 Aug 2024 04:47
Last Modified: 24 Aug 2024 04:47
URI: http://eprints.polbeng.ac.id/id/eprint/13612

Actions (login required)

View Item View Item