LAPORAN TUGAS AKHIR

IMPLEMENTASI PORT KNOCKING PADA LABORATORIUM JURUSAN TEKNIK INFORMATIKA (STUDI KASUS: LABORATORIUM HIGH PERFORMANCE COMPUTING)

Sebagai Salah Satu Syarat Untuk Menyelesaikan

Program Studi Diploma III Jurusan Teknik Informatika

Oleh :

MUTIARA KRISTINA BR SINAGA

6103211479

JURUSAN TEKNIK INFORMATIKA

POLITEKNIK NEGERI BENGKALIS

BENGKALIS

TAHUN 2024

HALAMAN PENGESAHAN

LAPORAN TUGAS AKHIR

IMPLEMENTASI PORT KNOCKING PADA LABORATORIUM JURUSAN TEKNIK INFORMATIKA (STUDI KASUS: LABORATORIUM HIGH PERFORMANCE COMPUTING)

Oleh:

MUTIARA KRISTINA BR SINAGA 6103211479

Telah diujikan dan dinyatakan lulus ujian tugas akhir pada tanggal 08 Agustus 2024 oleh tim penguji Program Studi Diploma III Teknik Informatika

Per Wahyat, M.Kom NIP. 198911262020121006

CS

Bengkalis, 08 Agustus 2024 Anggota Tim Penguji

Lipanter Mashur Guttom, M.Kom

NIP. 198708 22019031010

m ð Tengku Musri, M.Kom NIP. 198503082024211009

Desi Amirullah, M.T NIP. 198712092019031010

Mengetahui, Jurusan Teknik Informatika MEGERI R.Kasmawi, M.Kom NIP. 197706072014041001

PERNYATAAN KEASLIAN TUGAS AKHIR

Saya menyatakan dengan sesungguhnya bahwa Laporan Tugas Akhir ini adalah asli hasil karya saya dan tidak terdapat karya yang pernah dilakukan untuk memperoleh gelar Ahli Madya di Politeknik Negeri Bengkalis Jurusan Teknik Informatika, dan sepanjang pengetahuan saya juga tidak terdapat karya atau pendapat yang pernah ditulis atau dipublikasikan oleh orang lain, kecuali yang secara tertulis disebutkan sumbernya dalam naskah dan dalam daftar pustaka.

Bengkalis, 08 Agustus 2024

MUTIARA KRISTINA BR SINAGA NIM. 6103211479

CS Spinisting reflections

PERNYATAAN PERSETUJUAN

PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN

AKADEMIS

Sebagai civitas akademik Politeknik Negeri Bengkalis, saya yang bertanda tangan di bawah ini :

Nama	:	Mutiara Kristina Br Sinaga
Nim	:	6103211479
Program Studi	:	D-III Teknik Informatika
Jenis Karya	:	Tugas Akhir

Demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Politeknik Negeri Bengkalis Hak Bebas Royalti Nonekslusif (None-exclusive Royalty Free Right) atas karya ilmiah saya yang berjudul :

IMPLEMENTASI PORT KNOCKING PADA LABORATORIUM JURUSAN TEKNIK INFORMATIKA (STUDI KASUS: LABORATORIUM HIGH PERFORMANCE COMPUTING)

Beserta perangkat yang ada (jika diperlukan). Dengan Hak Akses Royalti/Nonekslusif ini Politeknik Negeri Bengkalis berhak menyimpan, mengalih media/formatkan, mengelola dalam bentuk pangkalan data (*database*), merawat dan mempublikasikan Tugas Akhir saya selama tetap mencantunnkan nama saya sebagai penulis/pencipta dan sebagai pemilik hak cipta.

Demikian pernyataan ini saya buat dengan sebenarnya,

Dibuat di : Bengkalis Pada Tanggal : 08 Agustus 2024

Yang menyatakan,

(Mutiara Kristina Br Sinaga) 6103211479

LEMBAR PERSEMBAHAN

In The Name Of Jesus Christ

"Mulialah harimu dengan mempersiapkan karir untuk masa depan Mu"

Doakan apa yang dikerjakan, Kerjakan apa yang di Doakan.

"Bersukacitalah dalam Pengharapan, Sabarlah dalam Kesesakan, dan Bertekunlah dalam Doa"

(Roma 12:12)

Keluarga Tercinta

Kepada cinta pertama dalam hidup penulis Ayah Mangiring Sinaga , Ibu Tercinta Esti Nurhayati Br Simatupang, dan Saudara tersayang Tomi Sinaga, Sarianto Sinaga, Imanuel Sinaga, Firnando Sinaga. Tugas Akhir ini penulis persembahkan untuk penyemangat hidup dan sumber kebahagiaan bagi penulis. Terima kasih penulis ucapkan atas kasih sayang, semangat, doa, dan dukungan yang selalu terlimpahkan.

Keluarga Besar dan Teman – Teman

Teruntuk Seluruh keluarga besar Penulis Sinaga dan yang selalu melimpahkan kasih sayang dan dukungan, serta teman-teman penulis dan sahabat tercinta yaitu Adellia Fitri yang telah membantu dan menemani penulis dalam pembuatan Tugas Akhir.

Dosen Fembimbing dan Dosen Wali

Terimakasih kepada Bapak Wahyat M.Kom selaku dosen pembimbing dan dosen wali penulis yang selalu senantiasa memberikan ilmu dan selalu sabar memberikan arahan, memberikan waktu, pikiran untuk mengarahkan Tugas Akhir saya sehingga Tugas Akhir ini dapat diselesaikan.

IMPLEMENTASI PORT KNOCKING PADA LABORATORIUM JURUSAN TEKNIK INFORMATIKA (STUDI KASUS: LABORATORIUM HIGH PERFORMANCE COMPUTING)

Nama Mahasiswa	: Mutiara Kristina Br Sinaga		
Nim	: 6103211479		
Dosen Pembimbing	: Wahyat M.Kom		

ABSTRAK

Mengamati beberapa masalah dalam pengelolaan jaringan mikrotik di Laboratorium High Performance Computing (HPC) pada Politeknik Negeri Bengkalis. Tidak ada pembagian prioritas bagi pengguna misalnya tidak ada pembagian bandwith antara dosen dan mahasiswa, dan masalah utamanya adalah kurangnya optimalisasi keamanan jaringan mikrotik. Maka dari itu solusi yang tepat pada Laboratorium HPC yaitu sesuaikan prioritas dan pembagian bandwith sesuai kebutuhan berdasarkan pengguna dan juga pembuatan halaman login page mikrotik untuk melakukan autentikasi dan informasi pengguna. Fokus yang utama adalah implementasi untuk solusi meningkatkan keamanan mikrotik dan web server menggunakan metode port knocking dan keamanan firewall raw. Implementasi port knocking dengan berbagai rule diantaranya menangkap traffic menggunakan protocol ICMP (Internet Control Message Protocol) atau lakukan ping yang masuk ke router mikrotik, kemudian lakukan hal yang sama untuk menangkap traffic pada port Telnet dan SSH (Secure shell) dengan protocol TCP (Transmission Control Protocol) dengan Tujuan Implementasi port knocking adalah menyembunyikan layanan yang aktif dari penyerang dan memberikan lapisan tambahan verifikasi sebelum memberikan akses ke layanan yang diinginkan dan sebagai mitigasi serangan DDOS. Pengujian yang akan dilakukan melibatkan evaluasi sebelum dan setelah penerapan Port knocking pada mikrotik dengan pengujian Port Scanning menggunakan NMAP pada Kali Linux dan pengujian selanjutnya pada keamanan web server yaitu DVWA (Damn Vulnerable *Web Application*) menggunakan *firewall raw* dengan pengujian serangan SYN *flood* dan HTTP *flood* menggunakan LOIC. Hasil pengujian yang dapat menunjukkan penurunan signifikan dalam upaya akses yang tidak sah dan juga mendapatkan hasil peningkatan jaringan keseluruhan.

Kata Kunci: Port Knocking, Mikrotik, Firewall Raw, Penyerang.

PORT KNOCKING IMPLEMENTATION IN THE LABORATORY OF INFORMATICS ENGINEERING DEPARTMENT (CASE STUDY: HIGH PERFORMANCE COMPUTING LABORATORY)

Name Of Student Student Identification Number Supervisor : Mutiara Kristina Br Sinaga : 6103211479 : Wahyat, M.Kom

ABSTRACT

Observed several problems in managing the proxy network in the High Performance Computing (HPC) Laboratory at Politeknik Negeri Bengkalis. There is no priority division for users, for example, there is no bandwidth division between lecturers and students, and the main problem is the lack of optimisation of proxy network security. Therefore, the right solution for the HPC Laboratory is to adjust priorities and bandwidth distribution according to user needs and also create a proxy login page to authenticate and user information. The main focus is the implementation of solutions to improve proxy and web server security using the port knocking method and raw firewall security. Implementation of port knocking with various rules including capturing traffic using the ICMP (Internet Control Message Protocol) protocol or pinging that enters the proxy router, then do the same to capture traffic on the Telnet and SSH (Secure shell) ports with the TCP (Transmission Control Protocol) protocol with the purpose of implementing port knocking is to hide active services from attackers and provide an additional layer of verification before providing access to the desired service and as mitigation of DDOS attacks. Tests that will be carried out involve evaluation before and after the application of Port knocking on proxy with Port Scanning testing using NMAP on Kali Linux. The next test on web server security is DVWA (Damn Vulnerable Web Application) using a raw firewall by testing SYN flood and HTTP flood attacks using LOIC. The test results can show a significant decrease in unauthorised access attempts and also get overall network improvement results.

Keywords: Port Knocking, Mikrotik, Firewall Raw, Attacker.

KATA PENGANTAR

Puji dan syukur kehadirat Tuhan Yang Maha Esa, karena berkat Rahmat-Nya penulis dapat menyelesaikan Tugas Akhir dengan judul **"Implementasi** *Port Knocking* **pada Laboratorium Jurusan Teknik Informatika**" pada Laboratorium HPC (*High Performance Computing*). Tujuan penulisan ini adalah untuk memenuhi salah satu syarat kelulusan pada Program Studi Teknik Informatika Politeknik Negeri Bengkalis Oleh karena itu penulis mengucapkan terima kasih yang sebesar-besarnya kepada:

- 1 Bapak Johny Custer S.T, M.T selaku Direktur Politeknik Negeri Bengkalis.
- 2 Bapak Kasmawi M.Kom selaku Ketua Jurusan Teknik Informatika.
- 3 Bapak Supria M.kom selaku Koordinator Program Studi D-III Teknik Informa tika.
- 4 Bapak Wahyat M.kom selaku Dosen Pembimbing Tugas Akhir.
- 5 Bapak Eko Prayitno M.Kom dan Bapak Nurul Fahmi M.T selaku Koordinator Proposal Tugas Akhir.
- 6 Kedua orang tua beserta seluruh keluarga dan teman-teman seperjuangan yang memberikan dorongan, motivasi dan semangat sehingga bisa menyelesaikan proposal ini.

Penulis menyadari bahwa masih banyak kekurangan pada Laporan Tugas Akhir (TA) ini. Maka penulis mengharapkan pembaca untuk memberikan saran dan kritik yang dapat membangun ke depannya dan semoga dapat memberikan manfaat kepada pembaca dimasa yang akan datang. Akhir kata, Penulis mengucapkan terimakasih.

Bengkalis, 08 Agustus 2024

Penulis

zouly

<u>Mutiara Kristina Br Sinaga</u> Nim. 6103211479

DAFTAR ISI

HALAMAN COVER

ABSTR	AKv
KATA I	PENGANTARix
DAFTA	R ISIx
DAFTA	R PUSTAKAxi
DAFTA	R GAMBARxii
DAFTA	R TABELxvii
BAB I P	ENDAHULUAN1
1.1	Latar Belakang1
1.2	Perumusan Masalah
1.3	Batasan Masalah6
1.4	Tujuan Penelitian
1.5	Manfaat Penelitian7
1.6	Metode Penyelesaian Masalah
BAB II '	TINJAUAN PUSTAKA9
2.1.	Kajian Terdahulu9
2.2.	Landasan Teori
2.2.	1. <i>Mikrotik</i>
2.2.	2. Port Knocking
2.2.	3. <i>IP Address</i>
2.2.	4. DVWA (Damn Vulnerable Web Application)/web server
2.2.	5. Keamanan Komputer dan Jaringan17
2.2.	6. IP Public dan IP Private
2.2.	7. <i>Firewall</i> 19
2.2.	8. Topologi Jaringan20

2.2.	2.9. Flowchart	
2.2.	2.10. Putty	23
2.2.	2.11. DDOS attack	
2.2.	2.12. Port Scanning	
BAB III	I PERANCANGAN	25
3.1.	Bahan dan Alat Penelitian	25
3.1.	.1 Bahan Penelitian	25
3.1.	.2 Alat Penelitian	
3.2.	Perancangan	
3.2.	2.1 Flowchart	
3.2.	2.2 Topologi Jaringan yang berjalan pada Laboratorium HPC	
3.2.	2.3 Topologi Jaringan yang diusulkan	
BAB IV	/ HASIL DAN PENGUJIAN	
4.1	Hasil	
4.2	Pengujian	79
BAB V	PENUTUP	98
5.1.	Kesimpulan	98
5.2.	Saran	98
DAFT	AR PUSTAKA	

DAFTAR GAMBAR

Gambar 2. 1 Firewall	
Gambar 2. 2 Topologi Bus	
Gambar 2. 3 Topologi Star	
Gambar 3. 1 Flowchart	
Gambar 3. 2 Topologi berjalan	
Gambar 3. 3 Topologi diusulkan	
Gambar 4. 1 login mikrotik menggunakan winbox	
Gambar 4. 2 Konfigurasi ether1	
Gambar 4. 3 IP ether1	
Gambar 4. 4 Konfigurasi <i>ether2</i>	
Gambar 4. 5 Konfigurasi ether3	
Gambar 4. 6 Konfigurasi wlan1	
Gambar 4. 7 halaman address list	
Gambar 4. 8 halaman DHCP server	
Gambar 4. 9 pilih interface ether2	
Gambar 4. 10 DHCP address space ether2	
Gambar 4. 11 gateway ether2	
Gambar 4. 12 IP pool ether2	
Gambar 4. 13 DNS Ether2	
Gambar 4. 14 Lease Time Ether2	
Gambar 4. 15 DHCP Server ether2 berhasil	
Gambar 4. 16 DHCP Server ether2	
Gambar 4. 17 pilih interface wlan1	
Gambar 4. 18 DHCP address space wlan1	41
Gambar 4. 19 gateway wlan1	41

Gambar 4. 20 IP Pool wlan1	41
Gambar 4. 21 DNS wlan1	42
Gambar 4. 22 Lease Time wlan1	42
Gambar 4. 23 DHCP Server wlan1 berhasil	42
Gambar 4. 24 DHCP server wlan1	43
Gambar 4. 25 pilih <i>interface ether3</i>	43
Gambar 4. 26 DHCP server ether3	44
Gambar 4. 27 Setting NAT ether1	45
Gambar 4. 28 Tab action Ether1	45
Gambar 4. 29 ping 8.8.8.8.	46
Gambar 4. 30 aktifkan wlan1 pada interface	46
Gambar 4. 31 Setting Hotspot Mikrotik	47
Gambar 4. 32 Isikan IP Address	47
Gambar 4. 33 Tentukan range IP Address	47
Gambar 4. 34 Pilih SSL Certificate	48
Gambar 4. 35 Memasukkan IP Address	48
Gambar 4. 36 Memasukkan DNS Server	49
Gambar 4. 37 Memasukkan DNS Name	49
Gambar 4. 38 Hotspot Mikrotik berhasil	50
Gambar 4. 39 tab server profiles	50
Gambar 4. 40 tab user profiles	50
Gambar 4. 41 Membuat profile untuk Dosen	51
Gambar 4. 42 Membuat profile untuk Mahasiswa	52
Gambar 4. 43 tambahkan user-user	52
Gambar 4. 44 mencoba memasukan username dan password	53
Gambar 4. 45 user dapat berhasil login	53
Gambar 4. 46 Konfigurasi rule knocking pertama	54
Gambar 4. 47 Tab action ICMP port knocking	54
Gambar 4. 48 <i>rule knocking</i> kedua	55

Gambar 4. 49 Src. Address List port kedua	5
Gambar 4. 50 Konfigurasi <i>rule knocking</i> kedua	5
Gambar 4. 51 Konfigurasi rule knocking ketiga	7
Gambar 4. 52 Src. Address List ICMP dan Telnet	7
Gambar 4. 53 Tab Action Telnet	3
Gambar 4. 54 Halaman Filter Rules	3
Gambar 4. 55 perintah <i>drop port-port</i>)
Gambar 4. 56 <i>drop</i> selain <i>port knocking</i>)
Gambar 4. 57 konfigurasi <i>drop port knocking</i>)
Gambar 4. 58 mikrotik tidak akan bisa masuk winbox)
Gambar 4. 59 mencoba masuk dengan IP mikrotik	l
Gambar 4. 60 ping ip mikrotik melalui CMD	l
Gambar 4. 61 <i>mengetuk "port 23"</i>	2
Gambar 4. 62 ketukan pada <i>telnet</i>	<u>)</u>
Gambar 4. 63 mengetuk "port 22"	3
Gambar 4. 64 ketukan pada SSH63	3
Gambar 4. 65 mikrotik berhasil terdeteksi pada aplikasi winbox	ł
Gambar 4. 66 perintah masuk ke direktori	5
Gambar 4. 67 <i>pwd</i>	5
Gambar 4. 68 unduh DVWA	5
Gambar 4. 69 izin penuh pada direktori DVWA	5
Gambar 4. 70 masuk ke direktori kerja <i>config</i>	5
Gambar 4. 71 salinan <i>file config</i>	5
Gambar 4. 72 perintah <i>ls</i>	5
Gambar 4. 73 perintah <i>edit file config</i>	7
Gambar 4. 74 ubah username dan password	7
Gambar 4. 75 jalankan MySQL	3
Gambar 4. 76 mengelola <i>database</i>	3
Gambar 4. 77 perintah SQL	3

Gambar 4. 78 perintah SQL untuk hak istimewa ke semua tabel	8
Gambar 4. 79 perintah <i>exit</i>	9
Gambar 4. 80 perintah untuk membuka <i>file php</i> 6	9
Gambar 4. 81 pencarian <i>fopen</i>	9
Gambar 4. 82 jalankan <i>apache2</i> 7	0
Gambar 4. 83 konfigurasi <i>apache2</i> 7	0
Gambar 4. 84 DVWA berhasil di install7	0
Gambar 4. 85 <i>forward</i> pada <i>tab general</i> 7	1
Gambar 4. 86 <i>forward</i> pada <i>tab action</i> 7	2
Gambar 4. 87 Verifikasi dan Uji Coba NAT7	2
Gambar 4. 88 <i>ip tables web server</i>	3
Gambar 4. 89 Keamanan <i>firewall raw</i> untuk serangan SYN flood7	4
Gambar 4. 90 <i>Tab advanced syn</i>	5
Gambar 4. 91 Tab extra Syn7	5
Gambar 4. 92 <i>Tab action Syn</i>	6
Gambar 4. 93 <i>Tab general HTTP</i> 7	7
Gambar 4. 94 Tab action drop HTTP7	8
Gambar 4. 95 nmap 192.168.1.2 sebelum diterapkan port knocking7	9
Gambar 4. 96 nmap 192.168.1.2 setelah diterapkan port knocking	1
Gambar 4. 97 nmap 192.168.3.1 sebelum diterapkan port knocking	2
Gambar 4. 98 nmap 192.168.3.1 setelah diterapkan port knocking	3
Gambar 4. 99 nmap 192.168.200.1 sebelum diterapkan port knocking	4
Gambar 4. 100 nmap 192.168.200.1 setelah diterapkan port knocking	5
Gambar 4. 101 nmap 192.168.100.158 sebelum diterapkan port knocking	6
Gambar 4. 102 setelah diterapkan port knocking	7
Gambar 4. 103 SYN flood attack pada LOIC	8
Gambar 4. 104 Hasil pada CPU untuk serangan SYN flood attack pada mikrotik 8	9
Gambar 4. 105 <i>HTTP flood attack</i> pada LOIC	9
Gambar 4. 106 Hasil pada CPU untuk serangan HTTP flood attack pada mikrotik9	0

Gambar 4. 107 UDP flood attack pada LOIC	.91
Gambar 4. 108 Hasil pada CPU untuk serangan UDP flood attack pada mikrotik	.91
Gambar 4. 109 UDP flood attack pada LOIC	.93
Gambar 4. 110 Hasil pada CPU untuk serangan UDP flood attack pada mikrotik	.93
Gambar 4. 111 Serangan SYN flood	.95
Gambar 4. 112 flooding Syn setelah diterapkan firewall raw	.95
Gambar 4. 113 Serangan HTTP flood	.96
Gambar 4. 114 HTTP flood setelah diterapkan firewall raw	.97

DAFTAR TABEL

Table.2. 1 Penelitian- penelitian terdahulu	12
Table 4. 1 Keamanan Web server dengan iptables	73
Table 4. 2 Sebelum Penerapan Port Knocking pada ether2	80
Table 4. 3 Setelah Penerapan Port Knocking pada ether2	
Table 4. 4 Sebelum Penerapan Port Knocking pada ether3	
Table 4. 5 Setelah Penerapan Port Knocking pada ether3	
Table 4. 6 Hasil Sebelum keamanan port knocking pada wlan1	
Table 4. 7 Hasil Setelah keamanan port knocking pada wlan1	85
Table 4. 8 Hasil Sebelum keamanan port knocking pada ether1	
Table 4. 9 Hasil Setelah keamanan port knocking pada ether1	
Table 4. 10 keamanan iptables	92
Table 4. 11 Firewall raw	94
Table 4. 12 hasil firewal raw	96
Table 4. 13 firewall raw	97

DAFTAR LAMPIRAN

Lampiran 1 Lembar Asistensi Bimbingan	102
Lampiran 2 Saran dan Perbaikan Sidang TA oleh Dosen Penguji 1	103
Lampiran 3 Saran dan Perbaikan Sidang TA oleh Dosen Penguji 2	104
Lampiran 4 Saran dan Perbaikan Sidang TA oleh Dosen Penguji 3	105
Lampiran 5 Saran dan Perbaikan Sidang TA oleh Dosen Pembimbing	106

BAB I

PENDAHULUAN

1.1 Latar Belakang

Jaringan Komputer adalah sekumpulan komputer yang saling terhubung melalui suatu media perantara seperti *switch*, *router*, *wireless*, kabel yang masing-masing komputer dapat bertukar informasi dan bertukar data karena berada dalam satu ruang lingkup yang disebut jaringan (Afdhol. P. Y. et al., 2023). Pesatnya perkembangan teknologi saat ini nyatanya memiliki dampak serangan terhadap jaringan pada sistem administrator. Sebagian besar jaringan komputer, hal ini dapat membuka peluang bagi para *hacker* untuk meretas dan merusak jaringan yang dibangun tersebut (Amarudin, 2018).

Sehingga bagi para pengguna teknologi yang terhubung dengan jaringan lokal maupun internet perlu waspada terhadap serangan yang dilakukan oleh pihak yang tidak bertanggung jawab. Banyak serangan-serangan yang bisa dilakukan dalam keadaan *port-port* yang terbuka diantaranya *virus, malware* dan *Trojan*. Walaupun sudah diatur dalam dalam Undang-Undang Nomor 11 Tahun 2008 Tentang Internet dan Transaksi Elektronik (ITE) pada Pasal 30 UU ITE tahun 2008 ayat 3 yang berbunyi: "Setiap orang dengan sengaja dan tanpa hak atau melawan hukum mengakses komputer dan Sistem Elektronik dengan cara apapun dengan melanggar, menerobos, melampaui, atau menjebol sistem pengaman".

Ancaman pidana pasal 45 ayat 3 setiap orang yang memenuhi unsur sebagaimana dimaksud dalam Pasal 30 ayat 3 dipidana dengan pidana penjara paling lama 8 (delapan) atau denda paling banyak Rp 800.000.000 (delapan ratus juta rupiah) dan di dalam Kitab Undang-Undang Hukum Pidana Pasal 406 KUHP dapat di kenakan pada kasus *deface* atau *hacking* yang membuat kerusakan atau melakukan modifikasi sistem milik orang lain. Sistem milik orang lain, yaitu :

- 1. Sistem Website atau Portal.
- 2. Sistem Server.
- 3. Sistem Jaringan.
- 4. Sistem Aplikasi.

Fokus Utama jika penyerang melakukan modifikasi atau kerusakan pada sistem jaringan khususnya pada *router mikrotik*. Keamanan jaringan *mikrotik* rentan terhadap serangan *port* yang terbuka dapat dihindari dengan menerapkan *port knocking* pada *router mikrotik*. *Simple port knocking* yang diterapkan agar sistem yang dibangun mampu mendeteksi dan menghindari serangan yang berbahaya terhadap jaringan dan langsung memberikan peringatan kepada pengelola jaringan (administrator) tentang kondisi jaringan yang sedang berjalan pada saat kejadian yang berlangsung (Saputro et al., 2020).

Port knocking merupakan suatu sistem keamanan yang bertujuan untuk membuka atau menutup akses block ke port tertentu dengan menggunakan firewall pada perangkat jaringan dengan cara mengirimkan paket atau koneksi tertentu. Koneksi berupa protocol TCP (Transmission Control Protocol), UDP (User Datagram Protocol), maupun ICMP (Internet Control Message Protocol). Sehingga untuk masuk dan menggunakan akses ke port tertentu yang telah dibatasi, maka user harus mengetuk terlebih dahulu dengan memasukan rule yang harus dilakukan terlebih dahulu. Rule yang hanya diketahui oleh pihak penyedia jaringan (administrator jaringan).

Sebuah sistem harus memiliki keseimbangan antar keamanan dan *fleksibilitas*. Satu cara untuk dapat mencapai sistem seperti demikian yaitu dengan mengakses *firewall*. Maka dengan menggunakan *firewall* secara tidak langsung kita dapat mendefinisikan *user* yang dapat dipercaya dan yang tidak dapat dipercaya dengan menggunakan alamat IP sebagai kriteria *filter* (Novianto et al., 2021). Hasilnya adalah sebuah sistem keamanan jaringan yang mengamankan *mikrotik* dengan metode *port knocking*. Hal ini

berfungsi sebagai alternatif untuk menjaga keamanan dalam jaringan komputer, mencegah penyerang untuk mengakses *router mikrotik* dan memungkinkan administrator untuk menentukan siapa mereka. Hanya mereka yang memiliki hak akses yang dapat masuk ke *port* tertentu (Blaise et al., 2020)

Saat ini permasalahan pada Laboratorium *High Performance Computing* (HPC) melibatkan sejumlah kendala yang signifikan dalam pengelolaan jaringan *mikrotik*. Salah satunya terkait masalah dalam pembagian *bandwith* antara dosen dan mahasiswa. Ketidakoptimalan dalam aspek keamanan jaringan *mikrotik* pada Laboratorium HPC menjadi fokus utama. Kurangnya tindakan keamanan dapat menyebabkan risiko tinggi terhadap akses yang tidak sah dan potensi ancaman keamanan yang serius. Oleh karena itu, diperlukan suatu solusi yang dapat meningkatkan keamanan jaringan pada *mikrotik* terutama ketika mengamankan *web server* yang berada di belakang NAT pada *router mikrotik* di Laboratorium HPC.

Solusi yang diusulkan melibatkan serangkaian tindakan konkret. Pertama, mengoptimalkan pembagian *bandwith* dan *hotspot user* dengan memperhatikan prioritas dan memastikan keseimbangan pembagian antara dosen dan mahasiwa. Pembuatan halaman *login page* pada perangkat *mikrotik* juga diperlukan sebagai langkah pengenalan pengguna. Tidak hanya memberikan lapisan keamanan tambahan, tetapi juga memberikan informasi yang berguna tentang pengguna. Selanjutnya yang menjadi implementasi utama untuk pengamanan jaringan pada *router mikrotik* untuk mengamankan dari potensi penyerang dan memberikan verifikasi tambahan sebelum memberikan akses ke layanan yang diinginkan pada *mikrotik* dan *mengamankan web server* yang berada pada NAT yang ada pada *mikrotik* dengan menggunakan *port knocking* dan *firewall raw* merupakan solusi yang sarankan untuk mengamankan *router mikrotik* yang berada pada Laboratorium *High Performance Computing* (HPC).

Mekanisme/skema sederhana ketika terjadi serangan pada router mikrotik di Laboratorium High Performance Computing (HPC). Port knocking diterapkan melalui 4 rule yaitu rule pertama lakukan ping IP address router mikrotik dengan protocol ICMP dan rule kedua lakukan ping IP address router mikrotik dengan port telnet dengan protocol TCP, rule ketiga lakukan hal yang sama untuk menangkap traffic pada port SSH dengan protocol TCP dan rule terakhir yaitu droping packet yang masuk kedalam router kecuali yang sudah melakukan ping kemudian telnet dan SSH seb elumnya. Rangkaian proses knocking harus sesuai dengan urutan rule port knocking yang telah dikonfigurasi, jika proses knocking tidak sesuai urutan maka tetap akan di block oleh firewall filter yang ada pada router mikrotik. Berdasarkan uraian di atas maka diperlukan pemanfaatan metode port knocking dalam sistem keamanan jaringan untuk mengurangi tingkat risiko, terutama pada jaringan yang ingin melakukan kejahatan dengan cara memindai port-port yang terbuka melalui perangkat mikrotik dan melakukan penyerangan DDOS attack.

Maka dari itu dilakukan pengujian pemanfaatan Port knocking yang dapat menjadi komponen penting dalam strategi mitigasi serangan DDoS, terutama ketika dihubungkan dengan perlindungan terhadap web server yang diamankan melalui firewall raw pada mikrotik. Dengan port knocking, akses ke port-port penting pada router hanya diberikan kepada pengguna yang mengikuti urutan knocking yang telah ditentukan, seperti mengirimkan paket ICMP, TCP Telnet, dan SSH secara berurutan. Hal ini membuat port-port tersebut tidak terlihat oleh penyerang yang mencoba melakukan port scanning atau melancarkan serangan DDoS seperti SYN flood dan HTTP flood dengan LOIC (Low Orbit Ion Cannon). Pada serangan SYN flood, di mana penyerang mencoba membanjiri *port* dengan permintaan koneksi yang tidak pernah diselesaikan, knocking mencegah port dapat serangan tersebut dengan menyembunyikan port dari akses langsung kecuali telah mengikuti urutan knocking yang benar. Sementara itu, untuk serangan HTTP flood yang berusaha membanjiri web server dengan permintaan HTTP palsu, firewall raw mikrotik dapat diatur untuk hanya menerima trafik dari klien yang telah diizinkan melalui proses port knocking. Maka

port knocking berfungsi sebagai gerbang pertama yang mencegah serangan DDoS menjangkau *web server*, sementara *firewall raw* menangani dan mem*filter* trafik yang masuk, memastikan hanya trafik yang sah yang dapat mencapai *web server*. Kombinasi dari *port knocking* dan *firewall raw* ini menciptakan lapisan keamanan yang kuat, mengurangi risiko kerusakan yang dapat disebabkan oleh serangan DDoS, dan menjaga ketersediaan serta kinerja *web server* di Laboratorium HPC. Solusi-solusi di atas yang telah dirancang dapat mengurangi resiko ancaman yang akan mengganggu aktivitas yang sedang berlangsung, disesuaikan dengan kondisi pada Laboratorium HPC.

1.2 Perumusan Masalah

Hasil dari permasalahan yang sudah diuraikan dari latar belakang masalah dapat di rumuskan permasalahaan yang ada pada pembuatan Metode Keamanan Jaringan *Port knocking mikrotik* pada Laboratorium *High Performance Computing* (HPC) yaitu sebagai berikut:

- 1. Bagaimana implementasi *port knocking* menggunakan rangkaian proses 3 ketukan yaitu *protocol* ICMP, lalu ketukan pada *port* Telnet dan *port* SSH yang ada pada *protocol* TCP dan implementasi *firewall filter* menggunakan *mikrotik RouterBoard* pada sistem keamanan jaringan Laboratorium *Performance Computing* (HPC)?
- 2. Bagaimana mengatur 4 baris *rule* tertentu, agar komputer yang tidak di kenali untuk mengakses ke *port* tujuan tertentu yang sedang terbuka tetapi tidak dapat masuk, tapi perangkat yang sudah dikenal dapat mengakses ke *port* tujuan dengan mengikuti 4 baris *rule* yang dibuat ?
- **3.** Bagaimana efektivitas pengujian *port knocking* dalam meningkatkan keamanan *web server* dalam *mikrotik* menggunakan *firewall raw* dari serangan DDOS seperti SYN *flood* dan HTTP *flood*?

1.3 Batasan Masalah

Berdasarkan rumusan masalah diatas, maka batasan masalah dalam metode port knocking pada Laboratorium High Performance Computing (HPC) adalah sebagai berikut:

- 1. Implementasi *port knocking* menggunakan dengan rangkaian proses 3 ketukan yaitu *protocol* ICMP, lalu ketukan pada *port* Telnet dan *port* SSH yang ada pada *protocol* TCP yang hanya dibuat untuk Laboratorium *High Performance Computing* (HPC).
- 2. Pengguna hanya bisa mengakses *port-port* dengan *rules* yang dibuat untuk dapat mengaksesnya.
- 3. Pembuatan port knocking dengan Mikrotik RouterBoard RB951Ui 2nd HaP.
- **4.** Uji coba *port knocking router mikrotik* dan keamanan *firewall filter* penelitian ini pada peran *Kali Linux* dengan melakukan *Port Scanning*.
- 5. Uji coba efektivitas port knocking pada keamanan web server yang di forward ke dalam NAT mikrotik dengan firewall raw. Penelitian ini pada peran LOIC sebagai sistem penyerang dengan jenis serangan DDOS attack yaitu berupa serangan SYN flood dan HTTP flood.

1.4 Tujuan Penelitian

Tujuan keamanan *port knocking* pada Laboratorium *High Performance Computing* (HPC) sebagai berikut:

- 1. Implementasi *port knocking mikrotik* menggunakan rangkaian proses 3 ketukan yaitu *protocol* ICMP, lalu ketukan pada *port* Telnet dan *port* SSH yang ada pada *protocol* TCP menggunakan *mikrotik RouterBoard* pada Laboratorium *High Performance Computing* (HPC) untuk meningkatkan keamanan jaringan.
- 2. Membuat 4 baris *rule* terhadap *router mikrotik*, agar pengguna yang tidak di kenali tidak dapat memiliki akses untuk masuk pada *port* tertentu yang

terbuka, tetapi dengan menganalisis dan di kenali oleh sistem keamanan jaringan komputer yang diberi akses oleh sistem administrator untuk perangkat yang sudah di kenali bisa dapat mengakses dengan menggunakan jaringan LAN (*Local Area Network*) ataupun internet dengan menggunakan *rule* yang dibuat.

3. Merancang dan melaksanakan pengujian dengan menggunakan *Kali Linux* dan LOIC dengan *Port Scanning* dan mitigasi serangan DDOS dengan jenis serangan SYN *flood* juga HTTP *flood* dalam meningkatkan keamanan *web server* pada *mikrotik* untuk mengukur efektivitas dan peran *port knocking* di *mikrotik*.

1.5 Manfaat Penelitian

Manfaat yang dapat diambil dari keamanan jaringan menggunakan port knocking pada Laboratorium High Performance Computing (HPC) ini yaitu sebagai berikut:

- 1. Dengan adanya keamanan jaringan *port knocking mikrotik* menggunakan rangkaian proses 3 ketukan yaitu *protocol* ICMP, lalu ketukan pada *port* Telnet dan *port* SSH yang ada pada *protocol* TCP untuk mengamankan jaringan komputer yang ada dan mengurangi risiko serangan akses yang tidak sah dengan menggunakan *port knocking*.
- Bagi administrator jaringan Laboratorium High Performance Computing (HPC) dapat memiliki hak untuk mengakses dan memasuki port-port tertentu dengan mengikuti rule yang dibuat.
- **3.** Mitigasi serangan DDOS dengan kombinasi *port knocking* dan *firewall raw* memberikan perlindungan berlapis terhadap serangan DDoS seperti *SYN flood* dan *HTTP flood*, memastikan bahwa hanya trafik yang sah yang dapat mencapai *web server*, sehingga menjaga stabilitas dan ketersediaan layanan.

1.6 Metode Penyelesaian Masalah

Metode Penyelesaian masalah dalam penelitian keamanan jaringan pada Laboratorium *High Performance Computing* yaitu sebagai berikut : Melakukan Identifikasi Masalah yang terjadi pada Laboratorium HPC dengan melakukan wawancara kepada Kepala Laboratorium HPC dan Laboran Laboratorium HPC dan kepada Network Administrator yang membangun infrastruktur jaringan komputer dan perangkat keras pada Laboratorium HPC kemudian Perancangan dan implementasi port knocking dan keamanan firewall raw pada router mikrotik. Dengan menggunakan port knocking, hanya trafik dari klien yang sah yang dapat mencapai port-port, sementara firewall raw menangani dan memblokir serangan yang lebih spesifik seperti SYN flood dan HTTP flood berdasarkan hasil wawancara maka akan melakukan analisis pada objek penelitian yang akan diteliti, dengan berdasarkan analisis yang difokuskan pada fungsi kualitas dari yang ada pada lokasi penelitian. Pada penelitian ini akan di lakukan analisis pada sistem keamanan jaringan komputer dengan menggunakan metode port knocking. Kemudian melakukan pengujian Port knocking dengan mitigasi serangan DDoS serta peran firewall raw mikrotik dalam melindungi web server dari serangan SYN flood dan HTTP flood. Berdasarkan wawancara tersebut, port knocking diterapkan untuk mengamankan port-port sensitif pada mikrotik, sehingga hanya pengguna yang mengikuti urutan knocking yang benar dapat mengakses port tersebut. Ini berfungsi sebagai lapisan pertama perlindungan terhadap serangan DDoS, dengan menyembunyikan port dari akses umum dan mengurangi kemungkinan serangan seperti SYN flood dan HTTP flood mencapai web server. kesimpulan, dimana pada penelitian ini hasil dicapai adalah apakah sistem jaringan di lokasi penelitian aman melalui port jaringan yang sudah ditentukan.

BAB II

TINJAUAN PUSTAKA

2.1. Kajian Terdahulu

Penelitian ini memiliki beberapa referensi terkait judul penelitian terdahulu yaitu penelitian dari (Novianto et al., 2021) yang berjudul "Implementasi Sistem Keamanan Jaringan Menggunakan Metode *Simple Port Knocking* pada *Router* Berbasis *Mikrotik*". Salah satu metode yang dapat digunakan untuk meningkatan keamanan sistem jaringan komputer adalah metode *simple port knocking*. *Simple port knocking* diterapkan agar sistem yang dibangun mampu mendeteksi dan menghindari serangan yang berbahaya terhadap jaringan dan langsung memberikan peringatan kepada pengelola jaringan (administrator) tentang kondisi jaringan yang sedang berjalan pada saat kejadian berlangsung. Penerapan *simple port knocking* menggunakan media *router mikrotik* yang berfungsi untuk merubah konfigurasi *setting* dan proteksi *router* sehingga tetap aman dari serangan *cracker*.

Menurut (Santoso et al., 2022) Yang judul Penelitian "Implementasi Keamanan Jaringan Menggunakan *Port Knocking*". Teknologi informasi harus diperbarui setiap tahun karena masalah keamanan data dan informasi. Keamanan informasi menjadi semakin penting seiring dengan perubahan teknologi informasi dan masih terus berubah hingga saat ini. Serangan pada *server* telah sering dilakukan oleh pengguna yang ceroboh. Keamanan jaringan perlu ditingkatkan untuk mengurangi penyalahgunaan jaringan *hacker*. Pada penelitian ini *port knocking* digunakan untuk melakukan penelitian untuk pembuatan jaringan komputer yang aman. Berdasarkan hasil analisis dan pengujian implementasi sistem, dapat disimpulkan bahwa sistem dapat berfungsi secara efektif dan keamanan jaringan dapat ditingkatkan dibandingkan

dengan keamanan non-jaringan. Pasang keamanan *port knocking* pada tempatnya. Kehadiran otentikasi yang sesuai saat mengakses adalah buktinya.

Berdasarkan penelitian terdahulu (Keamanan et al., 2022) yang berjudul "Sistem Keamanan Jaringan Komputer dan Data Dengan Menggunakan Metode Port Knocking" Seiring dengan perkembangan teknologi informasi saat ini yang selalu berubah, menjadikan keamanan suatu informasi sangatlah penting. Banyak serangan yang dilakukan oleh orang-orang yang tidak bertanggung jawab melakukan serangan terhadap server. Serangan-serangan tersebut sering dilakukan pada suatu port-port yang dalam keadaan terbuka, sehingga nantinya akan membuat orang-orang yang tidak mempunyai hak akses maupun yang tidak berkepentingan dapat dengan mudah mengendalikan port-port yang telah dimasuki. Maka untuk melakukan keamanan pada jaringan komputer dalam mengatasi serangan pada port-port, salah satunya adalah dengan menggunakan metode port knocking. Untuk menghindari serangan yang dilakukan dalam keadaan port terbuka maka digunakan suatu metode port knocking dan mengatur parameter-parameter agar perangkat komputer ini tidak memiliki port komunikasi yang bebas untuk dimasuki, tetapi perangkat masih tetap dapat diakses dari luar. Sehingga akan membuat orang yang tidak memiliki kesempatan unruk memasuki *port-port* yang ada.

Menurut penelitian Terdahulu (Yudi mulyanto et al., 2021) yang berjudul " Implementasi Port Knocking Untuk Keamanan Jaringan SMKN1 Sumbawa Besar". Keamanan jaringan komputer atau Computer Network Security sangat berhubungan dengan keamanan data oleh karena itu keamanan jaringan sangat penting untuk melindungi data dari berbagai serangan pihak-pihak yang tidak bertanggung jawab. Serangan tersebut dapat ditujukan terhadap instansi, perusahaan atau lembaga tertentu, tidak terkecuali Sekolah Menengah Kejuruan Negeri 1 Sumbawa Besar yang mengalami hal tersebut. Penelitian dilakukan untuk menganalisa dan mengimplementasikan metode port knocking dalam keamanan jaringan dan agar dapat mencegah serangan pada port-port jaringan komputer SMKN 1 Sumbawa Besar. Peneliti melakukan peningkatan keamanan jaringan menggunakan metode port *knocking* yang dapat membantu meningkatkan keamanan jaringan dan membantu administrator dalam mengamankan *Mikrotik Routerboard* pada sistem jaringan komputer SMKN 1 Sumbawa Besar. Adapun metode yang digunakan dalam pengembangan jaringan yaitu menggunakan metode *Network Development Life Cycle* (NDLC) yang terdiri dari enam tahapan yaitu analisis, perancangan, simulasi, *prototype*, penerapan dan *monitoring*.

Berdasarkan penelitian terdahulu (Setyowibowo & Moka, 2022). Kebutuhan internet yang tinggi di SMK Cakra Kusuma Jombang tidak diimbangi dengan sistem keamanan yang baik. Beberapa serangan yang digunakan antara lain *brute force*. Serangan *brute force* pada *mikrotik* mengakibatkan internet menjadi tidak stabil karena penyerang dapat mengubah konfigurasi *mikrotik*. Keamanan *admin* jaringan menjadi penting sebab *admin* merupakan *user* yang mengelola jaringan sekolah. *Simple port knocking* merupakan sebuah solusi jika terjadi serangan pihak luar yang ingin masuk lewat *port mikrotik* dengan *brute force*. Hasil pengujian dapat dilihat perbedaan tingkat keamanan dari serangan *brute force*. Dengan menerapkan *simple port knocking* dapat mencegah serangan *brute force* pada *admin mikrotik*. Walaupun dengan memasukkan *username* dan *password* yang benar tidak dapat masuk *mikrotik* karena ada *rule port* yang ada pada keamanan *simple port knocking*. Dengan *automated backup* sekolah tidak perlu lagi mendatangkan teknisi bila terjadi *error* pada *mikrotik* karena *backup* konfigurasi bisa digunakan untuk mengembalikan konfigurasi *mikrotik*.

Maka dari penelitian-penelitian terdahulu dan teori-teori yang sudah dipaparkan. Maka terdapat perbedaan dan persamaan dengan penelitian ini, yang dapat dilihat dari tabel berikut :

Table.2. 1 Penelitian- penelitian terdahulu

Sumber : (Data Olahan, 2024)

Aspek	(Novianto et al.,	(Santoso et al., 2022)	(Keamanan et al.,	(Yudi mulyanto et al.,	(Setyowibowo &
	2021)		2022)	2021)	Moka, 2022)
Tema Penelitan	Implementasi Sistem	Implementasi keamanan	Sistem Keamanan	Implementasi Port	Simple Port
	Keamanan Jaringan	jaringan Menggunakan	Jaringan Komputer	Knocking Untuk	Knocking untuk
	Menggunakan	Port Knocking	dan Data Dengan	Keamanan Jaringan	Keamanan Jaringan
	Metode Simple Port		Metode Port	SMKN1 Sumbawa Besar	pada <i>Mikrotik</i> SMK
	Knocking		Knocking		Cakra Kusuma
					Jombang
Metode	Simple Port	Port Knocking	Port Knocking	Port Knocking	Simple Port
Keamanan	Knocking				Knocking
Tujuan	Mendeteksi dan	Meningkatkan keamanan	Mengatasi serangan	Mencegah serangan pada	Mencegah serangan
Keamanan	Menghindari	jaringan dan memberikan	pada <i>port-port</i> yang	<i>port-port</i> jaringan	<i>brute force</i> pada
	serangan berbahaya	peringatan kepada	dalam keadaan	komputer SMKN1	Mikrotik
	terhadap jaringan	pengelola jaringan	terbuka	Sumbawa Besar	

Hasil Analisis	Efektif dan	Sistem dapat berfungsi	Mengamankan port-	Peningkatan keamanan	Mencegah serangan
dan Pengujian	meningkatkan	efektif dan meningkatkan	<i>port</i> agar tidak dapat	jaringan dengan metode	<i>brute foerce</i> pada
	keamanan jaringan	keamanan dibandingkan	dimasuki oleh pihak	port knocking	admin <i>mikrotik</i>
	dibandingkan dengan	dengan keamanan non-	yang tidak		dengan simple port
	keamanan non-	jaringan	berkepentingan		knocking
	jaringan				

2.2. Landasan Teori

2.2.1. Mikrotik

Pada awalnya, *Mikrotik* merupakan perangkat lunak yang diinstal pada komputer untuk mengontrol jaringan. Namun, seiring berjalannya waktu, *Mikrotik* telah berkembang menjadi perangkat jaringan yang handal dan terjangkau, sering digunakan oleh pengguna di perusahaan penyedia jasa internet (ISP). *Mikrotik* memiliki dua jenis utama, yaitu *Mikrotik RouterOS* dan *Mikrotik RouterBoard*.

Mikrotik RouterOS adalah sistem operasi yang berfungsi sebagai *router* jaringan. *Software* ini mampu mengubah komputer biasa menjadi *router* jaringan yang handal. Di sisi lain, *Mikrotik RouterBoard* merupakan perangkat keras (*hardware*) yang diproduksi oleh *Mikrotik*. Perangkat ini menjalankan sistem operasi *RouterOS* dan mirip dengan mini PC terintegrasi, karena satu *board Mikrotik RouterBoard* memiliki *processor*, RAM, ROM, dan memori *flash* (Mustaqim, 2022).

Dari pengertian *Mikrotik* dapat disimpulkan bahwa *mikrotik* merupakan salah satu solusi untuk masalah keamanan jaringan komputer, karena *fitur-fitur* dalam *mikrotik* dapat digunakan dalam manajemen jaringan. *Mikrotik* berfungsi sebagai perangkat jaringan komputer dengan *hardware* dan *software* yang mendukung fungsi *router*, *filtering*, *switching*, pengaturan *bandwith* dan *wireless access point*. Cocok untuk digunakan dalam jaringan perusahaan, ISP, dan *provider hotspot*.

2.2.2. Port Knocking

Port Knocking adalah suatu metode yang digunakan untuk membuka akses ke port tertentu yang sebelumnya telah diblokir oleh *firewall* pada perangkat jaringan. Metode ini dilakukan dengan mengirimkan paket atau koneksi khusus menggunakan protocol TCP, UDP, atau ICMP. Apabila koneksi yang dikirimkan oleh *host* sesuai dengan aturan *knocking* yang telah ditetapkan, maka *firewall* akan secara dinamis memberikan akses ke port yang sebelumnya diblokir. Dengan menerapkan port knocking, perangkat jaringan seperti router dapat menjadi lebih aman.

Administrator jaringan dapat melakukan pemblokiran terhadap *port-port* yang rentan terhadap serangan, seperti *Winbox* (TCP 8291), SSH (TCP 22), *Telnet* (TCP 23), atau *webfig* (TCP 80). Dengan demikian, jika dilakukan pemindaian *port* (*port scanning*), *port-port* tersebut akan terlihat tertutup. Meskipun demikian, dari pihak administrator jaringan masih tetap memungkinkan untuk melakukan konfigurasi dan pemantauan, namun dengan langkah-langkah khusus (*knocking*) agar mendapatkan izin dari *firewall* untuk mengakses *port* seperti *Winbox*, SSH dan lainnya (Na & Hipertensiva, n.d, 2020).

Dari pengertian *port knocking* dapat menyimpulkan bahwa *port knocking* merupakan salah satu metode keamanan jaringan yang memungkinkan akses ke *router* hanya setelah menerima koneksi upaya koneksi berurutan pada satu set *port* tertutup yang ditentukan sebelumnya. Setelah urutan upaya koneksi yang benar diterima, *RouterOS* secara dinamis menambahkan IP sumber *host* ke daftar alamat yang diizinkan maka akan dapat menghubungkan *router*.

2.2.3. IP Address

Alamat *IP Address* adalah nomor yang diberikan kepada komputer dan jaringan yang menggunakan *protocol* TCP/IP. Setiap komputer yang terhubung ke internet harus memiliki alamat IP yang berbeda atau unik, karena tidak boleh ada komputer atau perangkat jaringan lain yang memiliki alamat yang sama. Alamat IP unik ini terdiri dari 32 bit yang dibagi menjadi 4 oktet, masing-masing terdiri dari 8 bit.

00000000.00000000.00000000.00000000

o1 o2 o3 o4

Secara umum, alamat IP dapat dikategorikan menjadi 5 jenis, yaitu kelas A, B, C, D, dan E. Kelas IP D dan E digunakan untuk tujuan khusus. Kelas IP A, B, dan C dapat dibagi menjadi dua bagian, yaitu *network bit* dan *host bit*. *Network bit* membantu mengidentifikasi jaringan yang berbeda, sementara *host bit* berfungsi untuk mengidentifikasi perangkat *host* di dalam jaringan (Unpri Press, 2024).

Dari pengertian alamat *IP Address* dapat menyimpulkan bahwa *IP Address* merupakan alamat untuk identifikasi peralatan jaringan komputer, memungkinkan pertukaran data, akses internet, koneksi jaringan dengan *protocol* TCP/IP dan juga *IP Address* terdiri dari 5 jenis yaitu A, B, C, D, E.

2.2.4. DVWA ((Damn Vulnerable Web Application)/web server

DVWA adalah aplikasi web berbasis PHP/MySQL yang berjalan pada *protocol* HTTP yang rentan terhadap berbagai jenis celah keamanan. Tujuan utamanya adalah menjadi bantuan bagi para pemula dan profesional keamanan untuk menguji skill dalam proses keamanan aplikasi web (Armadhani et al., 2022). Sebuah *server* adalah suatu perangkat komputer yang menyimpan dan menjalankan program-program yang dapat menghasilkan informasi. Informasi

tersebut kemudian didistribusikan kepada komputer-komputer klien yang mengaksesnya. Secara sederhana, dapat berupa satu komputer yang menyediakan beberapa layanan aplikasi. Namun, dalam jaringan yang lebih kompleks, server dapat diatur untuk menyediakan satu atau beberapa layanan tertentu, sementara layanan lainnya ditangani oleh *server* lain.

Dengan kata lain, terjadi kerjasama antara beberapa *server* untuk memberikan layanan dan informasi kepada sejumlah komputer klien. Konfigurasi *server* yang kompleks seperti ini biasanya diterapkan oleh organisasi besar, seperti perusahaan kelas atas. Di sisi lain, *server* yang terdiri dari satu komputer yang melayani beberapa layanan biasanya digunakan dalam lingkungan yang lebih kecil, seperti sekolah, perkantoran, atau usaha kecil dan menengah (UKM). *Web server* merupakan jenis *server* yang memiliki fungsi untuk memberikan layanan *protocol* HTTP, contoh aplikasi *web server* yaitu : *apache, Microsoft IIS, Oracle, Tomcat, Nginx*, dll (Suryana, 2018).

2.2.5. Keamanan Komputer dan Jaringan

Keamanan komputer adalah cabang teknologi yang fokus pada melindungi informasi dalam sistem komputer. Sasarannya adalah untuk menjaga informasi dari potensi pencurian, kerusakan, atau untuk memastikan ketersediaannya, sesuai dengan prinsip-prinsip yang ada dalam kebijakan keamanan. Sementara itu, keamanan jaringan adalah konsep yang melibatkan berbagai teknologi, perangkat, dan prosedur yang didesain untuk mengenali dan mencegah akses yang tidak sah ke dalam jaringan.

Dengan kata lain, sistem keamanan jaringan bertujuan untuk mencegah orang yang tidak berhak masuk ke dalam jaringan. Fokus utama dari keamanan jaringan adalah mengurangi risiko ancaman seperti pencurian data dan kerusakan fisik pada perangkat komputer (Putri et al., 2023). Dari pengertian Keamanan Komputer dan Jaringan dapat menyimpulkan bahwa Keamanan Jaringan merupakan upaya pencegahan terhadap akses tidak sah ke dalam
jaringan komputer, bertujuan melindungi dari ancaman fisik dan logis, serta menjaga integritas data dari sistem.

2.2.6. IP Public dan IP Private

IP Public adalah alamat IP yang dapat diakses di internet. *IP Public* juga di kenal sebagai alamat *IP unicast* yang dapat dirutekan secara global. Ketika sebuah perangkat memiliki *IP public* dan terhubung ke internet, perangkat tersebut dapat diakses dari mana saja melalui internet. Namun, pemberian *IP public* tidak dapat dilakukan secara manual, melainkan melalui aturan dan proses yang ditetapkan. Pengguna dapat meminjam *IP public* dari penyedia layanan internet (ISP) untuk mendapatkan alamat IP yang bersifat publik.

Sementara itu, *IP private* adalah alamat IP yang digunakan untuk jaringan lokal. *IP Private* tidak tersedia di internet dan tidak dapat diakses dari jaringan global. Dalam praktiknya, jaringan area lokal biasanya menggunakan *IP Private*, dan koneksi antar jaringan lokal dilakukan melalui *router* (Mustaqim, 2022).

Terdapat tiga jenis IP yang dapat ditetapkan dalam skema IP address:

- Host address : Alamat IP yang ditetapkan pada perangkat jaringan seperti komputer atau router agar dapat terhubung satu sama lain. Alamat IP host bersifat unik dalam jaringan.
- 2. *Network address* : Alamat IP yang mewakili alamat jaringan. Semua server dalam jaringan memiliki alamat jaringan yang sama. *Network address* adalah IP pertama dalam subnet IP.
- 3. *Broadcast address* : Jenis *IP address* yang digunakan untuk mengirim data ke semua *host* yang masih berada dalam jaringan yang sama. *Broadcast address* adalah IP terakhir dalam *subnet* IP.

2.2.7. Firewall

Firewall tidak hanya digunakan untuk memblokir akses *client* ke sumber daya tertentu, tetapi juga untuk melindungi jaringan lokal dari ancaman dari luar, seperti virus atau serangan dari *hacker*. Ancaman dari internet ini seringkali datang dari banyak IP yang berbeda, sehingga sulit untuk memberikan perlindungan hanya berdasarkan IP. Selain berbasis *IP Address*, *filtering* juga dapat dilakukan berdasarkan *protocol* dan *port*, sehingga memberikan variasi cara untuk meningkatkan keamanan jaringan (Na & Hipertensiva, n.d.).

Firewall Filter berfungsi sebagai penyaring atau *filter* untuk paket data yang masuk dan keluar dari jaringan, baik itu dari dalam (*local*) maupun dari luar (*internet*). Dengan kata lain, *router* akan menentukan data apa saja yang diizinkan untuk masuk atau keluar. Proses *filtering* ini umumnya melibatkan definisi *IP address*, baik yang berasal (*src-address*) maupun yang dituju (*dst-address*). Misalnya, Anda dapat memblokir komputer klien dengan IP tertentu atau memblokir akses ke suatu situs web berdasarkan IP-nya.

Firewall raw berfungsi untuk memproses paket data pada tahap paling awal sebelum paket tersebut melalui proses *connection tracking* atau NAT. firewall raw digunakan untuk tindakan cepat seperti membuang paket yang tidak diinginkan tanpa mempertimbangkan status koneksi atau membuat modifikasi lebih lanjut.

Gambar 2. 1 *Firewall* (Sumber : <u>https://aptika.kominfo.go.id/2017/06/keamanan-jaringan-internet-dan-firewall/</u>)

2.2.8. Topologi Jaringan

Topologi Jaringan adalah suatu cara untuk menghubungkan beberapa komputer sehingga tercipta sebuah jaringan komputer. Topologi jaringan memiliki bentuk mulai dari susunan komputer dengan jenis kabel, konektor dan spesifikasi yang berbeda (Anas et al., 2018).

Topologi Jaringan memiliki tiga jenis bentuk yang paling dasar yaitu :

1. Topologi Bus

Topologi *Bus* adalah susunan jaringan yang paling sederhana. Pada topologi ini, terdapat satu kabel utama yang mengarah ke beberapa *node* atau perangkat lain yang terhubung. Kabel ini umumnya menggunakan jenis kabel *coaxial* dengan konektor BNC. Di setiap titik sambungan antara kabel utama dan *node*, digunakan *T-Connector*, sementara ujung kabel utama yang tidak terhubung pada perangkat jaringan diberi *terminator* atau *end-connector*.

gambar 2. 2 Topologi *Bus* (Sumber : <u>https://itbox.id/blog/topologi-bus/</u>)

2. Topologi Star

Topologi *Star* memiliki bentuk seperti bintang. Pusat dari topologi ini adalah hub/*switch* yang terletak di tengah, dan berfungsi sebagai pusat kendali. Semua perangkat jaringan terhubung langsung ke hub/*switch*, menjadikannya pusat vital dalam topologi ini. Topologi *Star* di kenal karena kemudahan perawatannya, dan menggunakan kabel UTP beserta *connector* RJ-45.

gambar 2. 3 *Topologi Star* (Sumber : <u>https://www.arduinoindonesia.id/2023/05/penjelasan-tentang-topologi-star.html</u>)

3. Topologi Ring

Topologi *Ring* membentuk struktur lingkaran, di mana setiap perangkat terhubung langsung dengan dua perangkat lainnya, sehingga setiap *node* memiliki dua kabel. Topologi ini menggunakan kabel *coaxial* dengan konektor BNC. Berbeda dengan topologi *Bus*, *Ring* tidak memerlukan *end-connector* karena semua kabel terhubung langsung dengan perangkat jaringan.

Gambar 2.4 : Topologi *Ring* (Sumber : <u>https://course-net.com/blog/topologi-ring-adalah/</u>)

2.2.9. Flowchart

Flowchart yang sering disebut sebagai bagan alir, adalah suatu bentuk representasi visual yang menggambarkan algoritma atau langkah-langkah instruksi dalam suatu sistem secara berurutan. Misalnya menggunakan diagram alir sebagai bentuk dokumentasi untuk menjelaskan gambaran logis suatu sistem. Dengan demikian, *flowchart* berfungsi sebagai bukti dokumentasi yang membantu memberikan solusi terhadap potensi masalah yang mungkin timbul dalam pengembangan sistem. *Flowchart* disusun dengan menggunakan simbol-simbol yang mewakili berbagai proses. Setiap simbol merepresentasikan suatu proses khusus untuk menghubungkan satu proses dengan proses berikutnya, digunakan garis penghubung sebagai elemen penghubung (Rosaly & Prasetyo, 2019).

2.2.10. Putty

Putty adalah sebuah *client* dari SSH dan Telnet yang dulunya dikembangkan oleh Simon Tatham untuk *platform* windows yang hanya bersifat *open source* yang memiliki tujuan untuk melakukan sebuah *protocol* jaringan SSH, Telnet dan *login Protocol* dapat digunakan ketika menjalankan sebuah sesi *remote* pada sebuah komputer melalui sebuah jaringan dengan jarak jauh (Ernawati et al., 2022).

2.2.11. DDOS attack

DDOS *attack* atau *Distributed Denial of Service* adalah sebuah jenis serangan yang mempengaruhi korban dengan sebuah tujuan menemukan kelemahan korban. DDOS *attack* dikenal serangan yang dirancang dapat melemahkan suatu layanan server. DDOS *attack* memiliki target utama pada sumber daya *bandwith*, CPU, dan sumber daya terbatas dalam jaringan (Ernawati et al., 2022). DDOS attack memiliki beberapa jenis serangan, termasuk SYN *flood* dan HTTP *flood*.

SYN (Synchronize) flood merupakan serangan dengan memanfaatkan paket SYN untuk membanjiri target dengan permintaan koneksi palsu, sehingga menghabiskan sumber daya server dan mengganggu layanan. Sedangkan HTTP (Hypertext Transfer Protocol) flood adalah serangan yang menargetkan lapisan aplikasi (layer 7) dari model OSI. Tujuan dari HTTP flood adalah membanjiri server dengan lalu lintas permintaan yang valid, sehingga menguras daya server seperti CPU, RAM, dan bandwith dan akhirnya menyebabkan server menjadi lambat atau tidak responsif.

2.2.12. Port Scanning

Port scanning adalah sebuah jenis serangan yang bertujuan untuk mengetahui aktif atau sebuah *host* target pada sebuah jaringan. Hasil dari *scanning* berupa *IP address,* sistem operasi, *service* dan juga aplikasi yang dijalankan. Informasi yang didapatkan dari serangan *port scanning* yang berguna untuk menentukan sebuah metode yang akan digunakan dalam melakukan penyerangan sistem yang akan dilakukan (Ernawati et al., 2022).

BAB III

PERANCANGAN

3.1. Bahan dan Alat Penelitian

Pengumpulan data pada penelitian ini untuk memperoleh informasi yang dibutuhkan dalam mencapai tujuan penelitian.

3.1.1 Bahan Penelitian

Pada Implementasi *Port Knocking* pada Laboratorium *High Performance Computing* (HPC), bahan penelitian yang dibutuhkan adalah :

a) Analisa

Analisa digunakan untuk menganalisa rancangan *port knocking mikrotik* yang akan dibangun pada pembuatan suatu desain keamanan jaringan, tahap pertama rancang bangun desain jaringan, hingga tahap pengujian keamanan jaringan *port knocking* tersebut untuk mengetahui apakah hasil dari rancangan yang di implementasikan pada *router mikrotik* untuk mendapatkan hasil yang baik.

b) Perancangan

Perancangan yaitu menerapkan dari tahap "analisa" kedalam bentuk desain jaringan untuk di implementasikan ke dalam sistem keamanan jaringan komputer.

c) Pengujian

Pengujian yang dilakukan pada *router mikrotik* untuk menunjukkan *port knocking* pada desain keamanan jaringan yang akan di terapkan bekerja dengan baik.

d) Dokumentasi

Proses dokumentasi dilakukan pada tinjauan pustaka, membaca dan mempelajari buku- buku, serta mencari sumber –sumber yang berkaitan dengan penelitian sebagai bahan referensi.

3.1.2 Alat Penelitian

1. Perangkat Keras

Alat yang dibutuhkan dalam proses penelitian ini adalah sebagai berikut :

a) Laptop

LAPTOP HP ENVY 13 –aq1xxx dengan spesifikasi *processor Intel* ® Core[™] i5-10210U CPU @ 1.6GHz (8CPUs), ~2.1GHz dan memiliki (RAM) sebesar 8192MB.

b) Kabel UTP (Unshileded Twisted Pair)

Kabel UTP merupakan kabel konektor *ethernet* yang memiliki fungsi sebagai konektor topologi jaringan komputer. RJ adalah singkatan dari *Registered Jack* yang merupakan standar kepala konektor dan urutan kabel yang menghubungkan dua atau lebih peralatan komunikasi.

c) Hub

Hub atau *Network Hub* berfungsi untuk menghubungkan komputer satu ke komputer lainnya yang masih dalam satu lingkup jaringan juga dapat berbagi informasi seperti dokumen dan *file* maupun data lainnya.

d) Router Wireless

Router Wireless berfungsi sebagai *router* termasuk fungsi dari *wireless access point* yang digunakan untuk mengakses jaringan internet kemudian berfungsi sebagai jaringan LAN dan *wireless* LAN.

2. Perangkat Lunak

Perangkat lunak/software yang digunakan dalam proses penelitian ini sebagai berikut :

a. Windows

Windows sebagai sistem operasi yang dipakai oleh komputer *client*, *operator*.

b. Kali Linux

Kali Linux merupakan sistem operasi yang dipakai oleh komputer penyerang (*attacker*).

c. Winbox

Winbox merupakan software atau unity yang digunakan untuk melakukan remote sebuah server mikrotik ke dalam mode GUI (Graphical User Interface) melalui operating system windows.

3.2. Perancangan

3.2.1 Flowchart

Perancangan flowchart untuk menjelaskan alur proses port knocking pada mikrotik yang akan diterapkan pada laboratorium HPC :

Gambar 3. 1 *Flowchart* (Sumber : Data Olahan, 2024)

- 1 Pada tahap awal akan dilakukan deteksi untuk masuk ke *mikrotik* melalui aplikasi *winbox* jika berhasil *login* maka akan dilakukan ketukan pertama menggunakan *protocol* ICMP dengan *rule* yang menangkap *traffic* ICMP (*ping*) yang masuk *router mikrotik*, kemudian secara otomatis ke *address-list* dengan nama ICMP KNOCKING selama 10 menit.
- 2 Kemudian akan dilakukan *rule* yang kedua yaitu untuk menangkap *traffic* kedalam *router mikrotik* dengan *protocol* TCP dan *destination port* 23 (Telnet) yang berasal dari *address-list* ICMP *Knocking*, IP yang berasal dari *address list* ICMP knocking tadi akan dimasukkan kembali ke dalam sebuah *address-list* baru yang bernama ICMP + Telnet *KNOCKING* selama 10 menit.
- 3 Setelah itu akan dilakukan *rule* yang ketiga yaitu penangkapan *traffic* kedalam *router mikrotik* dengan *protocol* TCP dan *destination port* 22 (SSH) yang berasal dari *address-list* ICMP + Telnet *KNOCKING*, IP yang berasal dari *address list* ICMP + Telnet *KNOCKING* akan dimasukan kedalam *address-list* yang baru bernama ICMP + Telnet + SSH *KNOCKING* selama 10 menit.
- 4 Tahap selanjutnya adalah *rule* yang terakhir yang berfungsi untuk melakukan *droping packet* yang masuk ke dalam *router miktotik* dengan tujuan port 8291 (*winbox*), 23 (*Telnet*), 22 (SSH) kecuali *IP user* yang sudah melakukan *ping* dan *telnet* juga SSH sebelumnya (*Src.Address List* = ! ICMP + *Telnet* + *SSH KNOCKING*).
- 5 Tahap pengujian untuk *knock port knocking* yaitu melihat berhasil tidaknya implementasi *port knocking* pada *mikrotik*. Pengujian ini dilakukan dengan 2 tahap yaitu tahap sebelum dan sesudah di implementasikan metode *port knocking*.
- 6 Tahap pengujian *Port Scanning* yaitu untuk melihat informasi dari pada *mikrotik* seperti celah *port* tujuan yang terbuka dan tertutup. Pada tahap pengujian ini menggunakan tool *NMAP* (*Network Mapper*) pada *mikrotik* dengan men-*scan* IP untuk melihat status *port*. Pengujian ini dilakukan dengan

2 tahap yaitu tahap sebelum dan sesudah di implementasikan metode *port knocking*.

7 Tahap Pengujian yang terakhir adalah DDOS *attack* yaitu untuk membuktikan keamanan *web server* dalam *mikrotik* setelah di implementasikan metode *firewall raw*. Pengujian ini dilakukan dengan cara ping pada IP dari *ISP mikrotik* pada *web server* sebagai target menggunakan SYN *flood* dan HTTP *flood* yang ada pada aplikasi LOIC.

3.2.2 Topologi Jaringan yang berjalan pada Laboratorium HPC

Menganalisa topologi jaringan yang berjalan pada Laboratorium HPC:

Gambar 3. 2 Topologi berjalan (Sumber : Laboratorium HPC, 2024)

- 1 *Mikrotik* dan *router wireless* yang berfungsi mengatur lalu lintas data antar jaringan lokal dan jaringan luar dan berguna untuk mengelola akses ke internet dan distribusi alamat IP kepada perangkat dalam jaringan kemudian data akan diteruskan pada hub.
- 2 Hub akan menggabungkan atau menyambungkan beberapa perangkat untuk memberikan titik pusat koneksi pada PC Laboran, Laptop maupun PC lainnya dalam satu jaringan yang memiliki kegunaan untuk memudahkan pertukaran data diantara perangkat yang terhubung ke hub.
- 3 Topologi ini cukup fleksibel untuk lingkungan laboratorium HPC namun memiliki kekurangan yaitu ketersediaan dan kinerja pusat titik koneksi pada hub dan *mikrotik* maka jika pusat rusak maka seluruh jaringan dapat terpengaruh.

3.2.3 Topologi Jaringan yang diusulkan

Menganalisa topologi jaringan yang di usulkan :

(Sumber : Data Olahan, 2024)

- 1 ISP (*Internet Service Provider*) berfungsi untuk menyediakan koneksi internet untuk jaringan dan menyediakan jalur komunikasi ke luar jaringan lokal.
- 2 *Mikrotik* dan *router wireless* yang yang berfungsi mengatur lalu lintas data antar jaringan lokal dan jaringan luar dan berguna untuk mengelola akses ke internet dan distribusi alamat IP kepada perangkat dalam jaringan kemudian data akan diteruskan pada hub.
- 3 *Port knocking* berguna untuk memberikan lapisan tambahan keamanan dengan mengharuskan pengguna untuk melakukan serangkaian koneksi yang benar sebelum diberikan akses ke jaringan dengan melibatkan membuka akses ke *port* tertentu setelah rangkaian permintaan khusus diterima.
- 4 Hub akan menggabungkan atau menyambungkan beberapa perangkat untuk memberikan titik pusat koneksi pada PC Laboran, Laptop maupun PC lainnya dalam satu jaringan yang memiliki kegunaan untuk memudahkan pertukaran data diantara perangkat yang terhubung ke hub.
- 5 *Mikrotik* berfungsi sebagai uji coba penerapan implementasi *port knocking* pada Laboratorium HPC dimana *kali linux* sebagai penyerang dengan mencoba jenis serangan *port scanning* Hasil yang signifikan yaitu sebelum dan sesudah penerapan *port knocking* pada *mikrotik* dapat mengatasi serangan *port scanning*. Kemudian uji coba penerapan *firewall raw* untuk menguji keamanan *web server* dalam *mikrotik* dengan penyerangan DDOS *attack* dimana terdapat 2 jenis serangan yang akan di uji coba yaitu SYN *flood* dan HTTP *flood* menggunakan *LOIC*. Hasil yang signifikan setelah penerapan *firewall raw* dapat mengatasi *web server* dari serangan DDOS *attack*.

BAB IV

HASIL DAN PENGUJIAN

4.1 Hasil

4.1.1. Konfigurasi *mikrotik*

4.1.1.1.login mikrotik menggunakan winbox

Tahap ini menampilkan login mikrotik menggunakan winbox dapat dilihat

dari gambar 4.1.

Sile Tools	v3.40 (Addresses)				_	Π	\sim
File Tools						_	\sim
Connect To: 18.	D:74:25:D1:0E				Keep	Passwore	d
Login: adr	nin				Oper	n In New W	indow
Password:					Auto	Reconnec	:t
Ac	ld/Set		Connect	To RoMON Co	onnect		
Managed Neighbo	ors						
Refresh					Find	all	Ŧ
MAC Address	∇ IP Address	Identity	Version	Board	Uptime		-
DC:2C:6E:83:24:5E	0.0.0.0	MikroTik	6.47.10 (lo	RB941-2nD	00:02:3	39	

Gambar 4. 1 *Login mikrotik* menggunakan *winbox* (Sumber : Data Olahan, 2024)

4.1.1.2.Konfigurasi ether1

Tahap Konfigurasi *ether1* sebagai *DHCP Client* untuk mendapatkan alamat *IP address* dari ISP dapat dilihat pada gambar 4.2 dibawah ini.

Gambar 4. 2 Konfigurasi *ether1* (Sumber : Data Olahan, 2024)

4.1.1.3.IP ether1

Maka tahap ether1 akan mendapat alamat IP address list secara otomatis.

4.1.1.4.Konfigurasi ether2

Tahap konfigurasi pada ether2 dengan alamat address 192.168.1.2/24.

Address <	192.168.1.2/24>		
Address:	192.168.1.2/24		ОК
Network:	192.168.1.0	▲	Cancel
Interface:	ether2	₹	Apply
			Disable
			Comment
			Сору
			Remove
enabled			
	Combor 4 4 Ko	nfiguraci ath	am2

Gambar 4. 4 Konfigurasi *ether2* (Sumber : Data Olahan, 2024)

4.1.1.5.Konfigurasi ether3

Tahap selanjutnya konfigurasi alamat IP address 192.168.3.1/24.

Address <	192.168.3.1/24>		
Address:	192.168.3.1/24		ОК
Network:	192.168.3.0		Cancel
Interface:	ether3	₹	Apply
			Disable
			Comment
			Сору
			Remove
enabled			
	Gambar 4. 5 Ko	onfigurasi <i>etl</i>	her3

(Sumber : Data Olahan, 2024)

4.1.1.6.Konfigurasi pada wlan1

Tahap konfigurasi pada wlan1 dengan alamat address 192.168.200.1/24.

Address <192.168.200.1/24>	
Address: 192.168.200.1/24	ОК
Network: 192.168.200.0	Cancel
Interface: wlan1 T	Apply
	Disable
	Comment
	Сору
	Remove
enabled	
Gambar 4. 6 Konfigurasi wla	an1

(Sumber : Data Olahan, 2024)

4.1.1.7. Halaman address list

Setelah berhasil dikonfigurasi maka alamat *IP address* akan tampil pada halaman *address list*.

Address List					
+ - 🖉 🗱 🖻					
Address	Network	Interface			
::: CLIENT					
+ 192.168.1.2/24	192.168.1.0	ether2			
+ 192.168.3.1/24	+ 192.168.3.1/24 192.168.3.0 ether3				
::: HOTSPOT					
+ 192.168.200.1/2	4 192.168.200.0	wlan1			

Gambar 4. 7 Halaman *address list* (Sumber : Data Olahan, 2024)

4.1.1.8. Halaman DHCP server

Tahap *setting* pada menu IP-*DHCP Server*- pilih menu *DHCP setup* untuk *ether2* dan *wlan1*, dan *ether3*.

• Interface pada Ether2-Next.

DHCP Setup		
Select interface to run D	HCP server on	
DHCP Server Interface:	ether2	∓
	Back Next Car	ncel

• DHCP address space, tahap ini akan terisi otamatis- Next.

• *Gateway*, tahap ini akan terisi otomatis oleh *Ip address* dari *ether2* yaitu 192.168.1.2-*Next*.

DHCP Setup	
Select gateway for given net	work
Gateway for DHCP Network	192.168.1.2
E	Back Next Cancel
Gambar 4. 11 G	ateway ether2

(Sumber : Data Olahan, 2024)

• *IP pool* yang akan digunakan oleh *client*, dan akan terisi otomatis sesuai *hosts* pada *prefix* yang akan digunakan.

Gambar 4. 12 *IP pool ether2* (Sumber : Data Olahan, 2024)

• DNS : 8.8.8.8 dan 8.8.4.4 yang akan digunakan otomatis pada semua *client* yang tersambung pada *ether2*.

DHCP Setup				□×
Select DNS se	rvers			
DNS Servers:	8.8.8.8			\$
	8.8.4.4			\$
		Back	Next	Cancel

• *Lease Time-Next*, yaitu berapa lama *ip address* akan dipinjamkan oleh *client*.

DHCP Setup

Gambar 4. 14 *Lease Time Ether2* (Sumber : Data Olahan, 2024)

• Konfigurasi DHCP Server pada ether2 berhasil.

• Sampai tahap ini *client* akan mendapatkan akses internet dan *IP address* otomatis 192.168.1.2 sampai 192.168.1.254.

DHCP Server <dhcp< th=""><th> ></th><th></th></dhcp<>	>	
Generic Queues	Script	ОК
Name:	dhcp1	Cancel
Interface:	ether2 ∓	Apply
Relay:	▼	Disable
Lease Time:	00:10:00	Сору
Bootp Lease Time:	forever T	Remove
Address Pool:	dhcp_pool1 ₹	
DHCP Option Set	•	
Src. Address:	•	-
Delay Threshold:	✓	
Authoritative:	yes 두	_
Bootp Support:	static T]
Client MAC Limit:	•	
Use RADIUS:	no 두	
	Always Broadcast	
	Add ARP For Leases	
	 Use Framed As Classless 	
	 Conflict Detection 	
enabled		

Gambar 4. 16 *DHCP Server ether2* (Sumber : Data Olahan, 2024)

• Interface pada wlan1-Next.

Gambar 4. 17 Pilih *interface wlan1* (Sumber : Data Olahan, 2024)

• DHCP address space, tahan ini akan terisi otamatis- Next.

• *Gateway*, tahap ini akan terisi otomatis oleh *Ip address* dari *wlan1* yaitu

192.168.200.1-Next.

DHCP Setup	
Select gateway for given network	
Gateway for DHCP Network: 192	2.168.200.1
Back	Next Cancel

Gambar 4. 19 Gateway wlan1 (Sumber : Data Olahan, 2024)

• Pada Tahap *IP pool* yang akan digunakan oleh *client*, dan akan terisi otomatis sesuai *hosts* pada *prefix* yang akan digunakan.

• DNS : 8.8.8.8 dan 8.8.4.4 yang akan digunakan otomatis pada semua *client* yang tersambung pada *wlan1*.

DHCP Setup		
Select DNS servers		
DNS Servers: 8.8.8.8		\$
8.8.4.4		\$
	Back Next	Cancel

• *Lease Time-Next*, yaitu berapa lama *ip address* akan dipinjamkan oleh *client*.

Gambar 4. 22 *Lease Time wlan1* (Sumber : Data Olahan, 2024)

• Konfigurasi DHCP Server pada wlan1 berhasil.

• Sampai tahap ini *client* akan mendapatkan akses internet dan *IP address* otomatis 192.168.200.1 sampai 192.168.200.254.

DHCP Server < dhcp2	2>		
Generic Queues	Script		ОК
Name:	dhcp2		Cancel
Interface:	wlan1	₹	Apply
Relay:		•	Disable
Lease Time:	00:10:00		Сору
Bootp Lease Time:	forever	₹	Remove
Address Pool:	dhcp_pool6	₹	
DHCP Option Set		•	
Src. Address:		•	
Delay Threshold:		•	
Authoritative:	yes	₹	
Bootp Support	static	₹	
Client MAC Limit		•	
Use RADIUS:	no	₹	
	Always Broad	lcast	
	Add ARP For Leases		
 Use Framed As Classless 			
 Conflict Detection 			
enabled		invalid	J

Gambar 4. 24 *DHCP server wlan1* (Sumber : Data Olahan, 2024)

• Tahap Interface pada Ether3-Next pada halaman DHCP Setup.

Gambar 4. 25 Pilih *interface ether3* (Sumber : Data Olahan, 2024)

•	Tahap DHCP	server	konfigurasi	pada	ether3.
---	------------	--------	-------------	------	---------

DHCP Server <dhcp< th=""><th>3></th><th></th><th></th></dhcp<>	3>		
Generic Queues	Script		ОК
Name:	dhcp3		Cancel
Interface:	ether3	Ŧ	Apply
Relay:		•	Disable
Lease Time:	00:10:00		Сору
Bootp Lease Time:	forever	₹	Remove
Address Pool:	dhcp_pool7	∓	Remove
DHCP Option Set		•	
Src. Address:		•	
Delay Threshold:		•	
Authoritative:	yes	Ŧ	
Bootp Support	static	₹	
Client MAC Limit		•	
Use RADIUS:	no	Ŧ	
	Always Broadcast		
	Add ARP For Leases		
	 Use Framed As Classless 		
	Conflict Detection		
enabled	invalid		

Gambar 4. 26 *DHCP server ether3* (Sumber : Data Olahan, 2024)

4.1.1.9. Setting NAT pada ether1

Setelah itu, Tahap setting NAT agar IP client bisa terkoneksi ke internet.

New NAT Rule	
General Advanced Extra Action	OK
Chain: srcnat	Cancel
Src. Address:	Apply
Dst. Address:	Disable
Protocol:	Comment
Src. Port	Сору
Dst Port	Remove
Any. Port	Reset Counters
In. Interface:	Reset All Counters
Out. Interface:ether1	
In. Interface List:	
Out Interface List	
enabled	
Gambar 4. 27 <i>Setting NAT</i> (Sumber : Data Olahan, 2	ether1 2024)

• Selanjutnya tahap pada *tab action*.

NAT Rule <>	
Advanced Extra Action Statistics	ОК
Action: masquerade	Cancel
Log	Apply
Log Prefix:	Disable
To Ports:	Comment
	Сору
	Remove
	Reset Counters
	Reset All Counters
enabled	

Gambar 4. 28 *Tab action Ether1* (Sumber : Data Olahan, 2024)

4.1.1.10. Ping koneksi internet pada Client

Kemudian pada tahap ini adalah melakukan pengecekan apakah koneksi internet berjalan dengan lancar pada *client* dengan melakukan perintah *ping* 8.8.8.8 pada CMD.

C:\Users\HP>ping 8.8.8.8
Pinging 8.8.8.8 with 32 bytes of data: Reply from 8.8.8.8: bytes=32 time=67ms TTL=55 Reply from 8.8.8.8: bytes=32 time=65ms TTL=55 Reply from 8.8.8.8: bytes=32 time=62ms TTL=55 Reply from 8.8.8.8: bytes=32 time=60ms TTL=55
Ping statistics for 8.8.8.8: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 60ms, Maximum = 67ms, Average = 63ms

Gambar 4. 29 *ping* 8.8.8.8 (Sumber : Data Olahan, 2024)

4.1.2. Manajemen *hotspot user*

4.1.2.1 Manajemen hotspot pada wlan1

Pada *interface wlan1* akan digunakan untuk *hotspot* dan aktifkan *interface wlan1* nya dan setting menggunakan *mode Apbridge*, pilih frekuensi dan beri nama SSID Wifinya.

Interfa	ce List					
Interf	ace Interface List	Ethernet EoIP Tunnel	IP Tunnel GR	ETunnel	VLAN	
+ •		Detect Internet	t		Find	
	Name	4 Туре	Actual MTU	L2 MTU	Tx	•
	🚸 ether1	Ethernet	1500	1598		
R	🚸 ether2	Ethernet	1500	1598		103.:
	🚸 ether3	Ethernet	1500	1598		
	🚸 ether4	Ethernet	1500	1598		
	🚸 pwr-line 1	PWR	1500	1598		
	😝 wlan1	Wireless (Atheros AR9.	1500	1600		
+						+
6 item	ns (1 selected)					

Gambar 4. 30 Aktifkan *wlan1* pada *interface* (Sumber : Data Olahan, 2024)

4.1.2.2 Setting Hotspot Setup

Tahap *setting Hotspot Mikrotik* dapat dilihat pada tahap ini menggunakan *interface wlan1*.

Hotspot Setup		
Select interface to r	un HotSpot on	
HotSpot Interface:	wlan1	Ŧ
	Back Next	Cancel

Gambar 4. 31 *Setting Hotspot Mikrotik* (Sumber : Data Olahan, 2024)

• Tahap *IP Address* dapat dilihat pada gambar 4.32.

• Tahap *range IP Address* yang akan diberikan ke *client hotspot* pada *DHCP Server*. Opsi ini sudah terisi secara otomatis, namun jika ingin mengganti *IP Address* nya silakan saja disesuaikan dengan kebutuhan.

Hotspot Setup	
Set pool for HotSpot addre	esses
Address Pool of Network:	168.200.2-192.168.200.254 🜩
	Back Next Cancel

Gambar 4. 33 Tentukan *range IP Address* (Sumber : Data Olahan)

• Tahap pilih *SSL Certificate* yang akan digunakan.

Hotspot Setup	
Select hotspot SSL certific	ate
Select Certificate: none	₹
	Back Next Cancel
Carata A 24	

• Tahap Memasukkan IP Address untuk SMTP Server.

Hotspot Setup	
Select SMTP server	
IP Address of SMTP Serve	r: 0.0.0.0
	Back Next Cancel

Gambar 4. 35 Memasukkan *IP Address* (Sumber : Data Olahan) • Tahap memasukkan DNS Server, dengan DNS Google 8.8.8.8.

Hotspot Setup			X
Setup DNS co	nfiguration		
DNS Servers:	8.8.8	•	;
	8.8.4.4		;
		Back Next Cancel	

Gambar 4. 36 Memasukkan *DNS Server* (Sumber : Data Olahan, 2024)

• Tahap memasukkan DNS Name untuk menggunakan nama domain pada

Hotspot Server Mikrotik nya dengan nama mutiarahpc.net->Next.

Hotspot Setup
DNS name of local hotspot server
DNS Name: mutiarahpc.net
Back Next Cancel
Gambar 4. 37 Memasukkan DNS Name

(Sumber : Data Olahan, 2024)

4.1.2.3 Hotspot Mikrotik berhasil

Pada Tahap ini Hotspot Mikrotik sudah berhasil dibuat.

Hotspot									
Servers	Server Profiles	Users	User Profiles	Active	Hosts	IP Bindings	Service Ports	Walled Garden	
+ -	Ø 😫 🍸	Reset	HTML Hots	pot Setup	•				Find
Nam	ie /	Interfa	ce	Address F	Pool	Profile	Addresses		
6 hotspot1		wlan1	wlan1		ol6	hsprof1	2		

Gambar 4. 38 *Hotspot Mikrotik* berhasil (Sumber : Data Olahan, 2024)

4.1.2.4 Tab server profiles

Dapat dilihat pada *tab server profiles* terdapat *DNS Name* yang sudah diatur sebelumnya.

Н	otspot										
:	Servers	Server Profi	les Users	User F	Profiles	Active	Hosts	IP Bindings	Service Ports	Walled Garden	
•	-	7									Find
	Name	Δ.	DNS Name	e Hī	TML Dire	ectory	Rate I	_imit (rx/tx)			•
*	🔒 defa	ault		ho	tspot						
	🔴 hspi	rof1	mutiarahpo	.net ho	tspot						

Gambar 4. 39 *Tab server profiles* (Sumber : Data Olahan, 2024)

4.1.2.5 Tab user profiles

Pada tab *user profiles* tambahkan 2 *user* pengguna *hotspot* yaitu Dosen dan Mahasiswa dengan cara *klik* tambah.

Hotsp	ot								
User	User Profiles	Active	Hosts	IP Bindings	Service Ports	Walled Garden	Walled Garden IP List	Cookies	
					1	Find			
Nar	ne 🗸	Session	Time	Idle Timeout	Shared U	Rate Limit (rx/tx)			-
0	😑 Dosen			nor	e 50	1M/1M			
😑 Mahasiswa		nor	e 100	512K/512K					
* 🔒	default			nor	e 1				

Gambar 4. 40 *Tab user profiles* (Sumber : Data Olahan, 2024)

4.1.2.6 Profile Dosen

Pada tahap ini masukan nama yang diinginkan,Membuat *profile* untuk Dosen dengan pengaturan *Rate Limit* (rx/tx) 1 Mbps yang artinya setiap *user* pada *profile* ini akan mendapatkan kecepatan akses 1 Mbps untuk upload/download. *Shared user* untuk dosen dengan jumlah 100 perangkat yang berarti 1 *user* Dosen dapat digunakan untuk 100 perangkat.

Hotspot User Profile <dosen></dosen>	
General Queue Scripts	ОК
Name: Dosen	Cancel
Address Pool: dhcp_pool6	Apply
Session Timeout	Сору
Idle Timeout none ∓ 🔺	Remove
Keepalive Timeout 00:02:00	
Status Autorefresh: 00:01:00	
Shared Users: 50	
Rate Limit (rx/tx): 1M/1M	
Add MAC Cookie	
MAC Cookie Timeout 3d 00:00:00	
Address List 🔷	
•	ŀ

Gambar 4. 41 Membuat *profile* untuk Dosen (Sumber : Data Olahan, 2024)

4.1.2.7 Profile Mahasiswa

Pada tahap ini tambahkan *profile* mahasiswa dengan kecepatan 512K/512K dan dengan *shared user* 50 perangkat.

Hotspot User Profile <mahasiswa></mahasiswa>	
General Queue Scripts	ОК
Name: Mahasiswa	Cancel
Address Pool: dhcp_pool6	Apply
Session Timeout 📃 🔻	Сору
Idle Timeout none ∓ 🔺	Remove
Keepalive Timeout 00:02:00	
Status Autorefresh: 00:01:00	
Shared Users: 100	
Rate Limit (rx/bx): 512K/512K	
Add MAC Cookie	
MAC Cookie Timeout 3d 00:00:00	
Address List	
•	
default	

Gambar 4. 42 Membuat *profile* untuk Mahasiswa (Sumber : Data Olahan)

• Setelah itu tambahkan setiap *user-user* yang dibagi untuk 2 *profile* yang berbeda.

ver Profiles Us	ers User Profiles Ac	tive Hosts IF	Bindings Service Po	rts Walled Gar	den Walled Garder	n IP
	🗇 🍸 🕫 Reset	Counters (O	Reset All Counters			
Server /	Name	Address	MAC Address	Profile	Uptime	
counters and lin	nits for trial users					
0					00:00:00	
📵 all	admin			default	01:03:14	
🖯 all	wahyat			Dosen	00:00:00	
🖯 all	niky hardinata			Dosen	00:00:00	
🖯 all	desi amirullah			Dosen	00:00:00	
🖯 all	eko prayitno			Dosen	00:00:00	
🖯 all	lipantri mashur gultom			Dosen	00:00:00	
🖯 all	m ridho nosa			Dosen	00:00:00	
🖯 all	eva kumiawaty			Dosen	00:00:00	
\varTheta all	m nasir			Dosen	00:00:00	
🖯 all	nurul fahmi			Dosen	00:00:00	
🖯 all	sri mawarni			Dosen	00:00:00	
🖯 all	supria			Dosen	00:00:00	
🖯 all	tengku musri			Dosen	00:00:00	
😑 all	mansur			Dosen	00:00:00	
🖯 all	agus tedyyana			Dosen	00:00:00	
🖯 all	danuri			Dosen	00:00:00	
🖯 all	depandi enda			Dosen	00:00:00	
🖯 all	elvi rahmi			Dosen	00:00:00	
🖯 all	elvi yumami			Dosen	00:00:00	
🖯 all	fajar ratnawati			Dosen	00:00:00	
🖯 all	fajri profesio putra			Dosen	00:00:00	
🖯 all	jaroji			Dosen	00:00:00	
🖯 all	kasmawi			Dosen	00:00:00	
🖯 all	lidya wati			Dosen	00:00:00	
🖯 all	m asep subandri			Dosen	00:00:00	
🖯 all	nurmi hidayasari			Dosen	00:00:00	
🖯 all	rezki kurniati			Dosen	00:00:00	
🖯 all	ryci rahmawati			Dosen	00:00:00	
🖯 all	reni iryanti			Mahasiswa	00:00:00	
🖯 all	cuci			Mahasiswa	00:00:00	
🖯 all	m farhan			Mahasiswa	00:00:00	
🖯 all	iqbal aimar alfarizi ta			Mahasiswa	00:00:00	
🖯 all	nur rasida			Mahasiswa	00:00:00	
🖯 all	m khairul			Mahasiswa	00:00:00	
🖯 all	adellia fitri			Mahasiswa	00:27:48	
\varTheta all	sabrina gicha amanda			Mahasiswa	00:00:00	
😑 all	mutiara kristina br sin			Mahasiswa	00:00:00	
\varTheta all	bayu			Mahasiswa	00:04:13	
🗑 all	cesar azaria meldo p			Mahasiswa	00:00:00	
🗑 all	al agib hidavatullah ri			Mahasiswa	00:00:00	
ă	11 11					

Gambar 4. 43 Tambahkan *user-user* (Sumber : Data Olahan, 2024)

4.1.2.8 Uji Coba Konfigurasi Hotspot

Setelah Konfigurasi *hotspot* berhasil maka pada tahap ini mencoba memasukan *username* dan *password* untuk login ke *hotspot* laboratorium HPC.

MikroTik HPC	
Otomatis hubungkan	
ΑΧΟΜΑ	
•	
Laboratorium High Performance (Computing
Login Hotspot	
Login Hotspot	
Username	
m Baharudin yusuf	
Password	
LOGIN	
Lab HPC	
	4

Gambar 4. 44 Mencoba memasukan *username* dan *password* (Sumber : Data Olahan, 2024)

• Dapat dilihat bahwa *user* dapat berhasil *login* kedalam *hotspot* laboratorium HPC.

Gambar 4. 45 *User* dapat berhasil *login* (Sumber : Data Olahan, 2024)
4.1.3. *Port Knocking*

4.1.3.1 Konfigurasi Rule Knocking Pertama

Pada *Mikrotik* Pertama pada bagian *chain* pilih "*Input*", setelah itu pada bagian "*protocol*" pilih "ICMP".

Gambar 4. 46 Konfigurasi *rule knocking* pertama (Sumber : Data Olahan, 2024)

 kemudian pada tahap ini untuk memilih tab action pilih "add src to addres list" dan pada bagian addres list di isi dengan "ICMP PORT KNOCKING" dengan time out "10 menit" untuk mengaksesnya.

Firewall Rule <>	X
General Advanced Extra Action Statistics OK	
Action: add src to address list Cancel	
Log	
Log Prefix:	
Address List ICMP PORT KNOCKING	
Timeout 00:10:00	
Remove	
Reset Counter	3
Reset All Counter	rs

Gambar 4. 47 *Tab action ICMP port knocking* (Sumber : Data Olahan, 2024)

4.1.3.2 Konfigurasi Rule Knocking Kedua

Konfigurasi *rule knocking* kedua, pada tahap ini menampilkan bagian *chain* pilih tanda "*input*" setelah itu pada bagian *protocol* "6 tcp" dan pada *Dst.port* isikan "23", *port* 23 ini untuk ketukan kedua dalam mengamankan *port* 23 (telnet).

• pada bagian Src Address list di menampilkan pilihan "ICMP PORT KNOCKING".

New Firewall Rule	
General Advanced Extra Action Statistics	ОК
Src. Address List 📃 ICMP PORT KNOCKING 🔻 🔺	Cancel
Dst. Address List	Apply
Layer7 Protocol:	Disable
Content	Comment
Connection Bytes:	Сору
Connection Rate:	Remove
Per Connection Classifier.	Reset Counters
Src. MAC Address:	Reset All Counters

 Kemudian beralih pada *tab action* pilih "*add src to address list*" dan pada bagian *address list* isi dengan "*ICMP+TELNET PORT KNOCKING*" dengan "*timeout* "10 menit untuk mengaksesnya.

Gambar 4. 50 Konfigurasi *rule knocking* kedua (Sumber : Data Olahan, 2024)

4.1.3.3 Konfigurasi port knocking pada SSH

Pada tahap ini menampilkan bagian *Chain* pilih "*input*", setelah itu pada bagian *protocol* pilih "6 tcp" dan pada *Dst.port* isikan *port* "22", *port* 22 ini untuk mengamankan *port* 22 (SSH). Kemudian beralih pada tab *Action* pilih "*add src to address list*" dan pada bagian *address list* isi dengan " *ICMP+TELNET+SSH PORT KNOCKING*" dengan *timeout* "10 menit" untuk mengaksesnya.

New Firewall Rule		
General Advanced Extra Action Statistics		ОК
Chain: input	Ŧ	Cancel
Src. Address:] •	Apply
Dst Address:	-	Disable
Protocol: 🗌 tcp 두		Comment
Src. Port	•	Сору
Dst. Port 22	•	Remove
Any. Port	-	Reset Counters
P2P:	•	Reset All Counters
In. Interface:	•	
Out Interface:	•	
Packet Mark:	-	
Connection Mark:	-	
Routing Mark:	-	
Routing Table:	-	
Connection Type:	•	
Connection State:	-	
Connection NAT State:	-	
enabled		

Gambar 4. 51 Konfigurasi *rule knocking* ketiga (Sumber : Data Olahan, 2024)

• pada bagian *Src Address list* menampilkan untuk memilih "*ICMP TELNET PORT KNOCKING*".

New Firewall Rule	
General Advanced Extra Action Statistics	ОК
Src. Address List 🗌 ICMP + TELNET PORT K	NOCKING T
Dst. Address List	▼ Apply
Layer7 Protocol:	▼ Disable
Content	Comment
Connection Bytes:	- Сору
Connection Rate:	
Per Connection Classifier:	✓ Reset Counters
Src. MAC Address:	▼ Reset All Counters
Out Bridge Port	~
In. Bridge Port	▼
IPsec Policy:	
Ingress Priority:	
Priority:	~
DSCP (TOS):	~
TCP MSS:	

Gambar 4. 52 Src. Address List ICMP dan Telnet (Sumber : Data Olahan, 2024)

 Kemudian beralih pada tab Action pilih "add src to address list" dan pada bagian address list isi dengan "ICMP+TELNET+SSH PORT KNOCKING" dengan timeout "10 menit" untu mengaksesnya.

Gambar 4. 53 *Tab Action Telnet* (Sumber : Data Olahan, 2024)

• Setelah berhasil maka pada halaman *tab filter rules* dapat dilihat ketukan pertama, ketukan kedua dan ketukan ketiga.

Gambar 4. 54 Halaman *Filter Rules* (Sumber : Data Olahan, 2024)

4.1.3.4 Konfigurasi drop pada port 8291,80,21,23,21

Pada bagian *chain* pilih"*input*", setelah itu pada bagian *Protocol* pilih "6 tcp" dan pada *Dst.port* isikan *port* 8291, 80, 21, 20, 23, 22. Kemudian beralih pada *Action* pilih "*drop*".

New Firewall Rule	
General Advanced Extra Action Statistics	ОК
Action: drop	▼ Cancel
Log	Apply
Log Prefix:	▼ Disable
	Comment
	Сору
	Remove
	Reset Counters
	Reset All Counters
enabled	
Gambar 4. 55 Perintah drop p	ort-port
(Sumber : Data Olahan, 20	$(24)^{-}$

• lalu beralih ke *tab Advanced* pada bagian *Src.Address List* pilih *"ICMP+TELNET+SSH PORT KNOCKING"*, klik centang pada kotak kecil (mengecualikan).

New Firewall Rule	
General Advanced Extra Action Statistics	ОК
Src. Address List 🔃 ICMP + TELNET + SSH PORT KNOCKING ∓ 🔺	 Cancel
Dst Address List	Apply
Layer7 Protocol:	Disable
Content	Comment
Connection Bytes:	Сору
Connection Rate:	Remove
Per Connection Classifier.	Reset Counters
Src. MAC Address:	Reset All Counters
Out Bridge Port	
In. Bridge Port	
IPsec Policy:	
Ingress Priority:	
Priority:	
DSCP (TOS):	
TCP MSS:	
Packet Size:	•

Gambar 4. 56 *Drop* selain *port knocking* (Sumber : Data Olahan, 2024)

• Pilih *port-port* apa saja yang ingin di *drop*.

General	Advanced	Extra	Action	Statistics			ОК
	Chain:	input	1		Ŧ	•	Cancel
	Src. Address:				•		Apply
1	Dst. Address:				•		Disable
	Protocol:	6	(tcp)		∓▲		Comment
	Src. Port				•		Сору
	Dst. Port		291,80,2	1,20,23,22	•		Remove
	Any. Port				•		Reset Counters
	In. Interface:				•		Reset All Counters
	Out. Interface:				•		
In.	Interface List				•		
Out	Interface List	-			-	+	

Gambar 4. 57 Konfigurasi *drop port knocking* (Sumber : Data Olahan, 2024)

4.1.3.5 Login mikrotik setelah port knocking

Maka pada *mikrotik* tidak akan bisa masuk dan juga *mikrotik* tidak akan terdeteksi pada *winbox*.

Keep Open Auto	Password In New W Reconned
V Keep	Passwor In New W Reconned
V Keep	Passwor n In New W Reconnec
Open Auto	n In New W Reconnec
Auto	Reconnec
Find	all
+ -	Filt
ne	
F	Find + –

Gambar 4. 58 *Mikrotik* tidak akan bisa masuk *winbox* (Sumber : Data Olahan, 2024)

4.1.3.6 Mencoba login mikotik pada winbox

Ketika mencoba masuk dengan IP *mikrotik* yang diketahui melalui *winbox* maka *winbox* tidak akan memberikan izin mengakses *mikrotik* sebelum melakukan ketukan *port knocking* yang sudah dikonfigurasi sebelumnya.

MINBOX (6	4bit) v3.40 (Addr	esses)			-		×
File Tools							
Connect To: Login: Password:	192.168.1.2 admin			Cancel	V Kee	ep Passwo en In New V o Reconne	rd Vindow ct
Connecting to 19	2.168.1.2						

Gambar 4. 59 Mencoba masuk dengan *IP mikrotik* (Sumber : Data Olahan, 2024)

4.1.3.7 Uji Coba Port Knocking

 a. Langkah pertama untuk menguji coba rule pertama dengan *ping ip* mikrotik (ICMP) dan memastikan konektivitas antara *client* dan router mikrotik perlu dilakukan testing dengan melakukan ping melalui CMD dengan perintah ping 192.168.1.2.

Gambar 4. 60 *Ping ip mikrotik* melalui CMD (Sumber : Data Olahan, 2024)

 b. Uji coba *rule* kedua dengan mengetuk "*port* 23" atau Telnet ketujuan IP *mikrotik* yaitu 192.168.1.2 dengan menggunakan aplikasi *PuTTY*.

🕵 PuTTY Configuration		? ×				
Category:						
	Basic options for your PuTTY session					
Logging	Specify the destination you want to connect to					
Keyboard	Host Name (or IP address)	Port				
Bell	192.168.1.2	23				
- Features	Connection type:					
Appearance Behaviour Translation Selection Colours Connection Data	◯ SSH ◯ Serial Other: Telr	et v				
	Load, save or delete a stored session Saved Sessions					
Proxy ⊕SSH Serial	Delain Cellings	Save				
I elnet Rlogin SUPDUP		Delete				
	Close window on exit Always Never Only on c	clean exit				
About Help	Open	Cancel				
Gambar	4. 61 Mengetuk "port 23"					

(Sumber : Data Olahan, 2024)

• Maka ini hasil ketika mencoba melakukan ketukan pada *telnet* atau

port 23.

Gambar 4. 62 Ketukan pada *telnet* (Sumber : Data Olahan, 2024)

• Lalu uji coba *rule* ketiga dengan mengetuk "*port* 22" atau SSH ketujuan ip *mikrotik* yaitu 192.168.1.2 dengan menggunakan aplikasi *PuTTY*.

-Session	Basic options for your PuT	TY session
Logging Terminal Keyboard Bell Features Window Appearance Behaviour Translation Selection	Specify the destination you want to con Host Name (or IP address) 192.168.1.2 Connection type: SSH Serial Other: Load, save or delete a stored session Saved Sessions	Port 22 Telnet
Concetion Concetion Data Proxy SSH Serial Telnet Rlogin SUPU IP	Default Settings	Load Save Delete
	Close window on exit Always Never Only	r on clean exit

Gambar 4. 63 Mengetuk "*port 22"* (Sumber : Data Olahan, 2024)

Maka ini hasil ketika mencoba melakukan ketukan pada SSH atau *port* 22.

Gambar 4. 64 Ketukan pada SSH (Sumber : Data Olahan, 2024)

• Hasil pengujian diatas yang telah dilakukan menunjukkan IP yang melakukan *port knocking* berhasil dan *mikrotik* berhasil terdeteksi pada aplikasi *winbox*.

🔘 WinBox (6	i4bit) v3.40 (Addresses)					-		×
File Tools								
Connect To	192.168.1.2					✓ Kee	p Passwo	rd
Login	admin					Ope	n In New V	Vindow
Password						Auto	Reconne	ct
	Add/Set			Co	nnect To RoMON Conne	ct		
Managed Ne	ighbors					E 1	-11	
Y Refresh						Fina	all	•
MAC Address	∓ in ∓					+ -	Fi	ter
MAC Address	V IP Address	∇ Identity	Version	Board	Uptime			•
DC:2C:6E:83:24:	5F 192.168.1.2	Mikro Lik	6.47.10 (Io	RB941-2nD	00:04:34			
Gam	bar 4. 65 <i>Mi</i>	<i>krotik</i> be (Sumber	rhasil te : Data (erdetek Dlahan	tsi pada aplil , 2024)	kasi w	vinbo	ЭХ

4.1.4. Install DVWA pada Kali Linux

DVWA membutuhkan *Apache* sebagai *web* server, MySQL sebagai *database*, dan PHP untuk pemrograman server-side.

4.1.4.1. Konfigurasi DVWA

- Pada tahap ini menampilkan Install DVWA Pada Kali Linux.
- Pada tahap ini menampilkan perintah *cd /var/www/html digunakan* untuk mengubah direktori kerja saat ini di terminal ke direktori /var/www/html.

Gambar 4. 66 Perintah masuk ke direktori (Sumber : Data Olahan, 2024)

• Kemudian pada tahap ini menampilkan lokasi direktori tempat dimana berada saat ini dalam struktur *file* sistem gunakan perintah *pwd*.

(root@kali)-[/var/www/html] sudo git clone https://github.com/digininja/DVWA.git Gambar 4. 68 Unduh DVWA

(Sumber : Data Olahan, 2024)

Pada tahap ini menampilkan perintah *Sudo chmod –R* 777 *DVWA*/ akan memberikan izin penuh untuk membaca, menulis dan mengeksekusi semua *file* dan direktori di dalam direktori **DVWA**/.

config yang berada dalam direktori DVWA dengan perintah *cd DVWA/config*.

nama baru *config.inc.php* dengan perintah *sudo cp config.inc.php.dist config.inc.php*.

•

• Pada tahap ini menampilkan edit *file config.inc.php* dengan perintah *sudo nano config.inc.php*.

• Pada tahap ini menampilkan *file* terbuka lalu ubah

db_user : admin.

db_password : password.

Gambar 4. 74 Ubah *username* dan *password* (Sumber : Data Olahan, 2024)

• Pada tahap ini menampilkan *install MySQL* dalam *Kali Linux* dengan perintah *sudo service mysql start*.

 Pada tahap ini menampilkan *prompt* MySQL untuk menjalankan perintah SQL dan mengelola *database*, tabel, pengguna dengan masukan kata sandi MySQL yaitu 123. Kemudian tambahkan *database* pada DVWA.

(Sumber : Data Olahan, 2024)
 Pada tahap ini menampilkan perintah SQL untuk membuat pengguna baru di MySQL dengan nama pengguna admin, yang diidentifikasi dengan kata sandi *password*, dan membatasi akses hanya dari alamat IP 127.0.0.1 (*localhost*).

NariadB [(none)]> create user 'admin'@127.0.0.1' identified by 'password'; Gambar 4. 77 Perintah SQL (Sumber : Data Olahan, 2024)
Pada tahap ini menampilkan perintah SQL untuk memberikan semua hak istimewa pada semua tabel dalam *database* dvwa kepada pengguna admin yang hanya dapat terhubung dari alamat IP 127.0.0.1.
MariadB [(none)]> grant all privileges on dvwa.* to 'admin'@'127.0.0.1'; Query OK, 0 rows affected (0.003 sec)

Gambar 4. 78 Perintah SQL untuk hak istimewa ke semua tabel (Sumber : Data Olahan, 2024)

• Pada tahap ini menampilkan perintah *exit* untuk keluar dari klien MySQL.

 Pada tahap ini menampilkan perintah *sudo nano etc/php/8.2/apache2* /*php.ini* digunakan untuk membuka file konfigurasi php.ini untuk PHP versi 8.2 yang digunakan oleh *server web Apache*.

• Pada tahap ini menampilkan *fopen* untuk pada *file* php.ini kemudian aktifkan *allow_url_include*.

Gambar 4. 81 Pencarian *fopen* (Sumber : Data Olahan, 2024)

• Pada tahap ini menampilkan layanan *apache HTTP server* pada sistem dengan perintah *sudo service apache2 start*.

• Pada tahap ini menampilkan *Reload* konfigurasi *apache HTTP Server* tanpa memutuskan koneksi yang ada atau menghentikan layanan dengan perintah *sudo service apache2 reload*.

• Pada tahap ini menampilkan DVWA sudah berhasil di *install* pada *Kali Linux* lalu ketikan 192.168.3.2/DVWA untuk melihat apakah DVWA berhasil dimana 192.168.3.2 adalah *IP Private* dari *web server*.

Gambar 4. 84 DVWA berhasil di *install* (Sumber : Data Olahan, 2024)

4.1.5. Forward Web Server ke dalam NAT mikrotik

Agar Web server bisa diakses dari internet, set fowarding di router mikrotik dengan fitur firewall NAT. Fowarding ini akan membalokkan traffic yang menuju ke IP publik yang terpasang di router menuju ke IP lokal web server. Dengan begitu, seolah-olah client dari internet berkomunikasi dengan web server meminjam IP dari ISP mikrotik router mikrotik. Langkah pembuatan rule, masuk ke menu IP --> Firewall --> klik tab ''NAT'', tambahkan rule baru dengan menekan tombol "add" atau tanda "+" berwarna merah.

4.1.5.1. Konfigurasi NAT

a) *rule* pada *tab general*

Pada tahap ini menampilkan *rule* pada *tab general* dengan keterangan perintah :

- *Chain*: Pilih *dstnat*.
- Dst. Address: Masukkan IP publik 192.168.100.160.
- *Protocol*: Pilih tcp.
- *Dst. Port:* Tentukan *port* yang ingin Anda *forward*, misalnya 80 untuk HTTP.

General	Advanced	Extra	Action	Statisti	cs	OK
	Chain: dst	inat		₹		Cancel
Src. /	Address:			•		Apply
Dst. /	Address:	192.16	8.100.16	0		Disable
I	Protocol:	6 (tcp)		₹ ▲		Comment
5	Src. Port			•		Сору
l	Dst. Port.	80		•		Remove
P	ny. Port			-		Reset Counters
In. I Out. I	nterface: nterface:					Reset All Counters
In. Inter	face List			•		
Out. Inter	face List			-	+	

Gambar 4. 85 *Forward* pada *tab general* (Sumber : Data Olahan, 2024)

b) *rule* pada *tab chain*

Pada tahap ini menampilkan *rule* pada *tab general* dengan keterangan perintah :

- Action: Pilih dst-nat.
- To Addresses: Masukkan alamat IP lokal 192.168.3.2.
- *To Ports:* Masukkan *port* tujuan yang sama dengan *port* pada *Dst. Port.*

Action: dstnat Cancel Log Log Prefix: Disable To Addresses: 192.168.3.2 Comment To Ports: 80 Remove Reset Counter Reset All Counter	General	Adva	anced	Extra	Action	Statist	tics	ОК
Log Apply Log Prefix Disable To Addresses: 192.168.3.2 Comment To Ports: 80 Remove Reset Counter Reset All Counter	A	Action:	dst-na	ət			₹	Cancel
Log Prefix: Disable Comment Copy To Ports: 80 Remove Reset Counter Reset All Counter			Lo	g				Apply
To Addresses: 192.168.3.2 Comment To Ports: 80 Remove Reset Counter Reset All Counter	Log	Prefix:]•	Disable
To Ports: 80 Copy Remove Reset Counter Reset All Counter	To Addre	sses:	192.1	68. <mark>3.</mark> 2				Comment
Remove Reset Counter Reset All Counter	То	Ports:	80					Сору
Reset Counter Reset All Counter								Remove
Reset All Counte								Reset Counters
								Reset All Counters
								Reset All Counter

Gambar 4. 86 Forward pada tab action (Sumber : Data Olahan, 2024)

4.1.5.2. Verifikasi dan Uji Coba

Pada tahap ini menampilkan mengatur NAT maka untuk menguji konfigurasi dari IP publik dengan menggunkan *browser web*.

Gambar 4. 87 Verifikasi dan Uji Coba NAT (Sumber : Data Olahan)

4.1.6. Keamanan IP Private web server menggunakan IP Tables mikrotik

Pada tahap ini menampilkan keamanan pada *web server* maka gunakan *iptables* untuk melakukan *drop* pada IP penyerang dengan IP penyerang 192.168.3.3.

Penjelasan dari perintah ini:

- *iptables*: Perintah untuk mengonfigurasi aturan *firewall* di *Linux*.
- *-A INPUT*: Menambahkan aturan ke rantai INPUT, yang menangani paket masuk ke sistem.
- -s **192.168.3.4**: Menentukan alamat *IP address* penyerang yaitu 192.168.3.3 yang ingin diblokir.
- *-j DROP*: Menentukan tindakan yang diambil terhadap paket yang cocok dengan aturan ini. *DROP* berarti paket akan dihapus dan tidak akan diproses lebih lanjut.

Gambar 4. 88 *Ip tables web server* (Sumber : Data Olahan, 2024)

Table 4. 1 Keamanan Web server dengan iptables

IP address Web Server (alamat IP lokal)	192.168.3.4
IP address Penyerang (LOIC)	192.168.3.3

4.1.7. Keamanan IP dari *ISP* pada *web server* menggunakan *firewall raw mikrotik*

- 4.1.7.1 Firewall Raw mengatasi serangan SYN Flood
- a) Tab General

Pada tahap ini menampilkan penggunaan aturan *raw* untuk membatasi koneksi baru dan mengurangi beban pada *web server*.

Dengan IP penyerang 192.168.3.3.

- *chain=prerouting*: Aturan ini diterapkan sebelum paket diteruskan ke proses *routing*.
- *protocol=tcp*: Aturan ini berlaku untuk paket TCP.
- *dst-port=80*: Paket yang ditargetkan adalah yang menuju *port* 80 *port* umum untuk HTTP.
- *In.Interface=ether1*: Aturan ini akan diterapkan hanya untuk paket yang masuk melalui antarmuka *ether1*.

Raw Rule <192.168.3.3->192.168.100.160:80>	
General Advanced Extra Action Statistics	ОК
Chain: prerouting	Cancel
Src. Address: 192.168.3.3	Apply
Dst. Address: 192.168.100.160	Enable
Protocol: 6 (tcp)	Comment
Src. Port	Сору
Dst. Port 🗌 80	Remove
Any. Port	Reset Counters
In. Interface: ether1	Reset All Counter
In. Interface List V Out Interface List	

Gambar 4. 89 Keamanan *firewall raw* untuk serangan *SYN flood* (Sumber : Data Olahan, 2024)

b) Tab Advanced

Pada *tab advanced* menampilkan pilih *tcp-flags=syn*: Aturan ini hanya berlaku untuk paket SYN (bagian dari tiga arah *handshake* TCP).

General Advanced Extra Action Statistics	OK
Src. Address List	Cancel
Dst. Address List	 Apply
Content	▼ Enable
Per Connection Classifier:	 Comment
Src. MAC Address:	 Copy
IPsec Policy:	- Remove
TLS Host	Reset Counters
Ingress Priority:	Reset All Counte
Priority:	•
DSCP (TOS):	~
TCP MSS:	•
Packet Size:	•
Random:	•
▲ TCP Flags	
TCP Flags: Syn	∓ ≑
Invert	
ICMP Options	
IPv4 Options:	•
TTL:	-

(Sumber : Data Olahan, 2024)

c) Tab Extra

Pada *Tab Extra* menampilkan *limit=10,5*: Membatasi jumlah koneksi baru dari IP tertentu menjadi 10 per detik dengan burst hingga 5.

Raw Rule <192.168.3.3->192.168.100.160:80>	
General Advanced Extra Action Statistics	ОК
- A - Limit	Cancel
Rate: 10 / sec ∓	Apply
Burst 5	Enable
Mode: 🗲 packet C bit	Commont
- V- Dst Limit	Comment
- Vth	Сору
-▼- Time	Remove
- V Stc. Address Type	Reset Counters
- - PSD	Reset All Counters
- V- Hotspot	
disable d	
nizanian	

Gambar 4. 91 Tab extra Syn (Sumber : Data Olahan, 2024)

d) Tab Action

Pada *Tab Action* menampilkan *action=drop*: Paket yang sesuai aturan ini akan dibuang, sehingga tidak akan mencapai *web server*.

Gambar 4. 92 Tab action Syn (Sumber : Data Olahan, 2024)

- 4.1.7.2 *Firewall Raw* mengatasi serangan HTTP *flood*
 - a. Tab General untuk keaamanan HTTP flood

Pada tahap ini menampilkan cara untuk mengatasi serangan HTTP *flood* menggunakan aturan *raw* untuk membatasi jumlah paket atau koneksi.

- *chain=prerouting*: Aturan ini diterapkan sebelum paket diteruskan ke proses *routing*.
- *protocol=tcp*: Aturan ini berlaku untuk paket TCP.
- *dst-port=80*: Paket yang ditargetkan adalah yang menuju *port* 80 *port* umum untuk HTTP.
- *In.Interface=ether1*: Aturan ini akan diterapkan hanya untuk paket yang masuk melalui antarmuka *ether1*.

Raw Rule <192.168.3.3	->192.16	8.100.16	0:80>			
General Advanced	Extra	Action	Statistics			ОК
Chain: pr	erouting				Ŧ	Cancel
Src. Address:	192.16	8.3.3			•	Apply
Dst. Address:	192.16	8.100.160)			Enable
Protocol:	6 (tcp)			Ŧ	•	Comment
Src. Port:] •	Сору
Dst. Port.	80					Remove
Any. Port				1	•	Reset Counters
In. Interface:	ether1			¥	•	Reset All Counters
Out. Interface:					•	
In. Interface List:					•	
Out. Interface List:					•	
disabled						

Gambar 4. 93 *Tab general* HTTP (Sumber : Data Olahan, 2024)

b. Tab Action untuk keamanan HTTP flood

Pada *Tab Action* menampilkan pilihan *action=drop*: Paket yang sesuai aturan ini akan dibuang, sehingga tidak akan mencapai *web server*.

Gambar 4. 94 *Tab action drop* HTTP (Sumber : Data Olahan)

4.2 Pengujian

4.2.1. Port Scanning

Port Scanning menggunakan *nmap*. *Nmap* berfungsi untuk mengidentifikasi port yang terbuka pada *host* atau jaringan.

Penyerang :

OS : Kali Linux.

IP: 192.168.3.253.

Target

Mikrotik RouterBoard (RB941-2Nd) HAP Lite.

IP:192.168.100.158 (ether1).

IP: 192.168.1.2 (ether2).

IP: 192.168.3.1 (ether3).

IP: 192.168.200.1 (wlan1).

4.2.1.1. Port Scanning IP mikrotik

Pada tahap ini menampilkan pemindaian 1000 *port* TCP pada IP target 192.168.1.2 sebelum diterapkan *port knocking* maka dapat dilihat pada gambar semua *port* terbuka.

- 14		
	(kali® kali)-[~]UVWA/config nmap 192.168.1.2 he2 reload	
	Starting Nmap 7.94 (https://nmap.org) at 2024-07-17 20:26 WIB	
	Nmap scan report for 192.168.1.2	
	Host is up (0.0036s latency).	
	Not shown: 994 closed tcp ports (conn-refused) hoqueue	
	PORTKNOWNSTATE SERVICE: glen 1000	
	21/tcp:k/open:aftp:0:00:00:00:00 brd 00:00:00:00:00 Jjk	
	22/tépet open) ssh/8 scope host lo	
	23/tcp v:openlftelnetver preferred_lft forever MU	
	80/tcp=t(open/lhttp:ope=host_noprefixroute	
	2000/tcp_openlfcisco-sccpureferred_lft_forever Ga	
	8291/tcp openADunknownLTICAST, UP, LOWER UP> mtu 1500 gd	
	Nmap done: 1 IP address (1 host up) scanned in 1.15 seconds	

Gambar 4. 95 *Nmap* 192.168.1.2 Sebelum diterapkan *port knocking* (Sumber : Data Olahan, 2024)

Table 4. 2 Sebelum Penerapan Port Knocking pada ether2

Hasil Sebelum keamanan <i>port knocking</i> pada <i>ether2</i>	Deskripsi
 21 (File Transfer Protocol) -> Open 22 (Secure Shell) -> Open 23 (Telnet) -> Open 80 (HyperText Transfer Protocol) -> Open 2000 (Skinny Client Control Protocol) -> Open 8291 (Winbox)-> Open 	 FTP server berjalan dan siap menerima koneksi untuk transfer file. SSH server berjalan dan siap menerima koneksi untuk akses shell yang aman. Telnet server berjalan dan siap menerima koneksi untuk akses shell yang tidak terenkripsi. Web server berjalan dan siap menerima koneksi HTTP untuk melayani halaman web. Layanan yang menggunakan SCCP berjalan dan siap menerima koneksi. MikroTik Winbox service berjalan dan siap menerima koneksi untuk konfigurasi router melalui utilitas
Pada hasil diatas untuk alamat IP 192.168.1.2 dengan semua port yang tidak dilakukan penerapan port knocking menunjukan status <i>open</i>	Jika semua port tersebut dalam keadaan " <i>open</i> ", maka layanan yang berjalan pada <i>port</i> tersebut terbuka untuk koneksi dan dapat diakses dari jaringan. Ini juga berarti bahwa <i>firewall</i> tidak memblokir atau melakukan <i>filter</i> akses ke <i>port-port</i> tersebut.

• Pada tahap ini menampilkan pemindaian 1000 *port* TCP pada IP target 192.168.1.2 setelah diterapkan *port knocking* maka dapat dilihat pada gambar semua *port* tertutup.

$(kall \oplus kall) - [~]$	
Starting Nmap 7.94 (https://nmap.org) at 2024-07-17 20:34	WIB
Nmap scan report for 192.168.1.2	
Host is up (0.010s latency).	
Not shown: 994 closed tcp ports (conn-refused)	
PORT STATE SERVICE	
21/tcp filtered ftp of preferred is forever	
22/tcp filtered ssh	
23/tcp filtered telnet	
80/tcp filtered http	
2000/tcp filtered cisco-sccp	
8291/tcp filtered unknown	
Nman done: 1 TP address (1 host up) scanned in 1.24 seconds	

Gambar 4. 96 *Nmap* 192.168.1.2 Setelah diterapkan *port knocking* (Sumber : Data Olahan, 2024)

Table 4. 3 Setelah Penerapan Port Knocking pada ether2

Hasil Setelah keamanan port knocking pada ether2	Deskripsi
Pada hasil scan <i>nmap</i> 192.168.1.2 yang sudah diterapkan <i>port-port</i> 21, 22, 23, 80, 2000, dan 8291 dalam keadaan tertutup (<i>filtered</i>)	Pada hasil di atas, semua <i>port</i> yang tertutup oleh aturan firewall menunjukkan status " <i>filtered</i> ". Maka <i>firewall MikroTik</i> menghalangi akses ke <i>port-port</i> tersebut sampai urutan <i>port</i> <i>knocking</i> yang benar dilakukan.

4.2.1.1. Port Scanning IP ether3

Pada tahap ini menampilkan pemindaian 1000 *port* TCP pada IP target 192.168.3.1 sebelum diterapkan *port knocking* maka dapat dilihat pada gambar semua *port* terbuka.

(kali⊕ kali)-[~] \$ nmap 192.168.3.1	
Starting Nmap 7.94 (https://nmap.org) at 2024-07-17 20:55 W	IB
Nmap scan report for 192.168.3.1	
Host is up (0.90s latency).	
Not shown: 994 closed tcp ports (conn-refused)	
PORT STATE SERVICEA/config	
21/tcpilo_openicftpjache2_start	
22/tcp open ssh	
23/tcp open telnetWA/config	
80/tcp.p.open16http254	
2000/tcp open 7cisco-sccps://nmap.org) at 2024-07-17 20:5	
8291/tcp open unknown	
Note: Host seems down. If it is really up, but blocking ou	
Nmap done: 1 IP address (1 host up) scanned in 1.16 seconds	
(Mman denot 1 10 address (0 bests up) scapped in 1 /7 sesse	

Gambar 4. 97 *Nmap* 192.168.3.1 Sebelum diterapkan *port knocking* (Sumber : Data Olahan, 2024)

Table 4. 4 Sebelum Penerapan Port Knocking pada ether3

Hasil Sebelum keamanan port knocking	Deskripsi
7) 21 ($File Transfer Protocol$) -> 7 Open 8 8) 22 ($Secure Shell$) -> $Open$ 9 9) 23 ($Telnet$) -> $Open$ 9 10) 80 ($HyperText$ $Transfer$ 10 Protocol) -> $Open$ 10 11) 2000 ($Skinny$ $Client$ $Control$ 11 Protocol) -> $Open$ 12 12) 8291 ($Winbox$)-> $Open$ 12	FTP server berjalan dan siap menerima koneksi untuk transfer file. SSH server berjalan dan siap menerima koneksi untuk akses shell yang aman. Telnet server berjalan dan siap menerima koneksi untuk akses shell yang tidak terenkripsi. Web server berjalan dan siap menerima koneksi HTTP untuk melayani halaman web. Layanan yang menggunakan SCCP berjalan dan siap menerima koneksi. MikroTik Winbox service berjalan dan siap menerima koneksi untuk konfigurasi router melalui utilitas Winbox.

Pada hasil diatas untuk alamat IP	Jika semua port tersebut dalam
192.168.3.1 dengan semua port yang	keadaan "open", maka layanan yang
tidak dilakukan penerapan port	berjalan pada port tersebut terbuka
knocking menunjukan status open	untuk koneksi dan dapat diakses dari
	jaringan. Ini juga berarti bahwa
	<i>firewall</i> tidak memblokir atau
	melakukan <i>filter</i> akses ke port-port
	tersebut.

• Pada tahap ini menampilkan pemindaian 1000 *port* TCP pada IP target 192.168.3.1 setelah diterapkan *port knocking* maka dapat dilihat pada gambar semua *port* tertutup.

	b kali)-[· 192.168.	∼] 3.1ess (1 host up) scanned in 0.26 se		
Starting	Nmap 7.9	4 (https://nmap.org) at 2024-07-17 20:35	WIB	
Nmap sca	n report	for 192.168.3.1		
Host is	up (1.0s	latency).		
Not show	n: 994 cl	osed tcp ports (conn-refused)		
PORT	STATE	SERVICE		
21/tcp	filtered	ftp		
22/tcp	filtered	sshill/conflig		
23/tcp	filtered	telnet		
80/tcp	filtered	http://nc.php.dist		
2000/tcp	filtered	cisco-sccp		
8291/tcp	filtered	unknown		
Nmap don	e: 1 IP a	ddress (1 host up) scanned in 2.19 seconds		

Gambar 4. 98 *Nmap 192.168.3.1* Setelah diterapkan *port knocking* (Sumber : Data Olahan, 2024)

Table 4. 5 Setelah Penerapan Port Knocking pada ether3

Hasil Setelah keamanan <i>port knocking</i> pada <i>ether3</i>	Deskripsi
Pada hasil scan <i>nmap</i> 192.168.1.2 yang sudah diterapkan <i>port-port</i> 21, 22, 23, 80, 2000, dan 8291 dalam keadaan tertutup (<i>filtered</i>)	Pada hasil di atas, semua <i>port</i> yang tertutup oleh aturan firewall menunjukkan status " <i>filtered</i> ". Maka <i>firewall MikroTik</i> menghalangi akses ke <i>port-port</i> tersebut sampai urutan <i>port</i> <i>knocking</i> yang benar dilakukan.

4.2.1.2. Port Scanning IP wlan1

Pada tahap ini menampilkan pemindaian 1000 *port* TCP pada IP target 192.168.200.1 sebelum diterapkan *port knocking* maka dapat dilihat pada gambar semua *port* terbuka.

1	route	
	<pre>(kali@kali)+[*]rever preferred_lft forever</pre>	
	L_\$ nmap 192.168.200.1	
	Starting Nmap 7.94 (https://nmap.org) at 2024-07-17 20:55 N	VIB
	Nmap scan report for 192.168.200.1	
	Host is up (0.91s latency).	
	Not shown: 994 closed tcp ports (conn-refused)	
	PORTSUUG STATE SERVICE 2 start	
	21/tcp open ftp	
	22/tcp open ssh/DVWA/config	
	23/tcpsp open10telnet4	
	80/tcpng open 7http(https://nmap.org) at 2024-07-17 20:5 }	
	2000/tcp open cisco-sccp	
	8291/tcp:openerunknown If it is really up, but blocking ou b	
	r ping probes, try -Pn	
	Nmap done: 1 IP address (1 host up) scanned in 1.177 seconds	
	ds	

Gambar 4. 99 *Nmap* 192.168.200.1 Sebelum diterapkan *port knocking* (Sumber : Data Olahan, 2024)

Table 4. 6 Hasil Sebelum keamanan port knocking pada wlan1

Hasil Sebelum keamanan <i>port knocking</i> pada <i>wlan1</i>	Deskripsi
13) 21 (File Transfer Protocol) -> Open	13 FTP server berjalan dan siap
14) 22 (Secure Shell) -> Open	menerima koneksi untuk transfer file.
15) 23 (Telnet) -> Open	menerima koneksi untuk akses shell yang aman.
16) 80 (HyperText Transfer Protocol) ->	15 Telnet server berjalan dan
Open	siap menerima koneksi untuk akses shell yang tidak terenkripsi.
17) 2000 (Skinny Client Control	16 Web server berjalan dan siap menerima koneksi HTTP
Protocol) -> Open	untuk melayani halaman web.
18) 8291 (<i>Winbox</i>)-> Open	17 Layanan yang menggunakan SCCP
	berjalan dan siap menerima
	koneksi.
	18 MikroTik Winbox service
	berjalan dan siap menerima

	koneksi untuk konfigurasi <i>router</i> melalui utilitas <i>Winbox</i> .
Pada hasil diatas untuk alamat IP 192.168.200.1 dengan semua port yang tidak dilakukan penerapan port knocking menunjukan status <i>open</i>	Jika semua port tersebut dalam keadaan " <i>open</i> ", maka layanan yang berjalan pada <i>port</i> tersebut terbuka untuk koneksi dan dapat diakses dari jaringan. Ini juga berarti bahwa <i>firewall</i> tidak memblokir atau melakukan <i>filter</i> akses ke <i>port-port</i> tersebut.

• Pada tahap ini menampilkan pemindaian 1000 *port* TCP pada IP target 192.168.200.1 setelah diterapkan *port knocking* maka dapat dilihat pada gambar semua *port* tertutup.

(kali@kali)-[~] 			
Starting Nmap 7.94 (https://nmap.org) at 2024-07-17 2	0:48 W	/IBnu	
Nmap scan report for 192.168.200.1) scanned in 0.26 se			
Host is up (1.0s latency).			
Not shown: 994 closed tcp ports (conn-refused)			
PORT			
21/tcp DVfiltered_ftp			
22/tcp filtered ssh			
23/tcp filtered telnet			
80/tcp filtered~http\/config]			
2000/tcp filtered cisco-sccp			
8291/tcp.filtered_unknownc.php.dbst			
Nmap done: 1 IP address (1 host up) scanned in 2.19 sec	onds		

Gambar 4. 100 *Nmap* 192.168.200.1 Setelah diterapkan *port knocking* (Sumber : Data Olahan, 2024)

Table 4. 7 Hasil Setelah keamanan port knocking pada wlan1

Hasil Setelah keamanan <i>port</i> knocking pada wlan1	Deskripsi
Pada hasil scan <i>nmap</i> 192.168.200.1 yang sudah diterapkan <i>port-port</i> 21, 22, 23, 80, 2000, dan 8291 dalam keadaan tertutup (<i>filtered</i>)	Pada hasil di atas, semua <i>port</i> yang tertutup oleh aturan firewall menunjukkan status " <i>filtered</i> ". Maka <i>firewall MikroTik</i> menghalangi akses ke <i>port-port</i>

tersebut	sampai	urutan	port
knocking	yang benai	dilakuka	n.

4.2.1.3. Port Scanning IP mikrotik

Pada tahap ini menampilkan pemindaian 1000 *port* TCP pada IP target 192.168.100.158 sebelum diterapkan *port knocking* maka dapat dilihat pada gambar semua *port* terbuka.

Gambar 4. 101 *Nmap* 192.168.100.158 Sebelum diterapkan *port knocking* (Sumber : Data Olahan, 2024)

Table 4. 8 Hasil Sebelum keamanan	port knocking pada ether.	1
-----------------------------------	---------------------------	---

Hasil Sebelum keamanan <i>port knocking</i> pada <i>ether1</i>	Deskripsi
19) 21 (File Transfer Protocol) -> Open	19 <i>FTP server</i> berjalan dan siap menerima koneksi untuk transfer
20) 22 (Secure Shell) -> Open	file.
	20 SSH server berjalan dan siap
21) 23 (Telnet) -> Open	menerima koneksi untuk akses
	shell yang aman.
22) 80 (HyperText Transfer Protocol) ->	21 Telnet server berjalan dan siap
	menerima koneksi untuk akses
Open	shell yang tidak terenkripsi.
	22 Web server berjalan dan siap
23) 2000 (Skinny Client Control	menerima koneksi HTTP untuk
	melayani halaman web.
Protocol) -> Open	23 Layanan yang menggunakan
	SCCP berjalan dan siap menerima
	koneksi.

24) 8291 (Winbox)-> Open	24 <i>MikroTik Winbox service</i> berjalan dan siap menerima koneksi untuk konfigurasi <i>router</i> melalui utilitas <i>Winbox</i> .
Pada hasil diatas untuk alamat IP 192.168.1.2 dengan semua port yang tidak dilakukan penerapan port knocking menunjukan status <i>open</i>	Jika semua port tersebut dalam keadaan "open", maka layanan yang berjalan pada port tersebut terbuka untuk koneksi dan dapat diakses dari jaringan. Ini juga berarti bahwa firewall tidak memblokir atau melakukan filter akses ke port-port tersebut.

• Pada tahap ini menampilkan pemindaian 1000 *port* TCP pada IP target 192.168.100.158 setelah diterapkan *port knocking* maka dapat dilihat pada gambar semua *port* tertutup.

(kali@kali)-[~] \$ nmap 192.168.100.158		
Starting Nmap 7.94 (https://nmap.org) at 2024-07-17	20:50 WIB	
Nmap scan report for 192.168.100.158 to forever		
Host is up (1.0s latency).st noprefixroute		
Not shown: 994 closed tcp ports (conn+refused)		
PORTING: STATEDCASSERVICECAST, UP, LOWER_UP> mtg 1500 gd		
21/tcpel filtered ftpup default glen 1000		
22/tcpnk/filtered_sshod:58.at:96.brd_fiffificficficficf		
23/tcpet filtered telnet4 brd 392 303 3.255 scope glob		
80/tcp_hofiltered.httpth0		
2000/tcpafiltered.cisco-sccpenned_lft_549sec		
8291/tcp6filtered unknown fe58 ed006/64 scope link nope		
route		
Nmap done: 1_IP address (1 host up) scanned in 2.22 seconds		

Gambar 4. 102 Setelah diterapkan *port knocking* (Sumber : Data Olahan, 2024)

Hasil Setelah keamanan <i>port</i> knocking pada ether1	Deskripsi
Padahasilscannmap192.168.100.158yangsudahditerapkanport-port21, 22, 23, 80,2000,dan8291dalamtertutup(filtered)	Pada hasil di atas, semua <i>port</i> yang tertutup oleh aturan firewall menunjukkan status " <i>filtered</i> ". Maka <i>firewall MikroTik</i> menghalangi akses ke <i>port-port</i> tersebut sampai urutan <i>port knocking</i> yang benar dilakukan.

4.2.2. DDOS attack (UDP flood, SYN flood dan HTTP flood) setelah penerapan iptables

DDOS atttack menggunakan aplikasi *LOIC* dapat mengirimkan sejumlah besar permintaan ke *server* target, menyebabkan *overload* dan mengganggu akses normal.

4.2.2.1. DDOS attack setelah penerapan ip tables

Berikut adalah jenis penyerangan DDOS *Attack* yaitu SYN *flood* dan HTTP *flood, UDP flood setelah* penerapan *iptables* pada *IP web server*.

Penyerang :

LOIC (LOW ORBIT ION CANNON)

IP: 192.168.3.3

Target :

IP Lokal Web Server: 192.168.3.4

4.2.2.1.1. Serangan SYN flood attack

Pada tahap ini *SYN flood attack* adalah serangan *ddos attack* dengan mengirimkan paket SYN ke target. Dengan keterangan perintah :

Gambar 4. 103 *SYN flood attack* pada LOIC (Sumber : Data Olahan, 2024)

• Maka hasil menampilkan dari proses di *mikrotik* setelah dilakukan *flooding syn* setelah diterapkan *firewall raw* dimana *CPU Load* menjadi 0 %.

Resources	
Uptime:	0621:55
Free Memory:	58 MIB
Total Memory:	32.0 MiB
CPU:	MIPS 24Kc V7.4
CPU Count	1
CPU Frequency:	660 MHz
CPU Load:	0%
Free HDD Space:	7.7 MB
Total HDD Size:	160 MiB
Sector Writes Since Reboot	1 120
Total Sector Writes:	74 116
Bad Blocks:	0.0%
Architecture Name:	smips
Board Name:	hAP lite
Version:	6.47.10 (long-term)
Build Time:	May/31/2021 09:54:59
Factory Software:	644.5

Gambar 4. 104 Hasil pada CPU untuk serangan *SYN flood attack* pada *mikrotik* (Sumber : Data Olahan, 2024)

4.2.2.1.2. Serangan *HTTP flood attack*

Pada tahap ini *HTTP flood testing* adalah serangan dengan mengirimkan GET atau POST dalam jumlah besar ke *server* target. Dengan keterangan perintah :

Gambar 4. 105 *HTTP flood attack* pada LOIC (Sumber : Data Olahan, 2024)
• Maka hasil menampilkan dari proses di *mikrotik* setelah dilakukan *HTTP flood* setelah diterapkan *firewall raw* dimana *CPU Load* turun menjadi 2 %.

Resources		
Uptime:	061654	Γ
Free Memory	54MR	
Total Memory	a numerica de la constancia de la constancia Se constancia de la constan	F
	ee me	-
CPU:	MPS 24%: V7.4	
CPU Count	1	
CPU Frequency:	660 MHz	
CPU Load	2%	
Free HDD Space:	77/118	
Total HDD Size:	160MB	
Sector Writes Since Reboot	1091	
Total Sector Writes:	74087	
Bad Blocks:	00%	
Architecture Name:	smips	
Board Name:	MP Ite	
Version:	647.10 (long-term)	
Build Time:	May(31/2021 09:54:59	
Factory Software:	645	

Gambar 4. 106 Hasil pada CPU untuk serangan HTTP flood attack pada mikrotik (Sumber : Data Olahan, 2024)

4.2.2.1.3. Serangan *UDP flood attack*

Pada tahap ini *UDP flood attack* adalah jenis serangan penolakan layanan dimana sejumlah besar paket UDP dikirim ke *server* yang diargetkan dengan tujuan melumpuhkan kemampuan *server* dalam memproses dan merespons. Dengan keterangan perintah :

Low Orbił Ion Cannon	URL IP 192.168.3.4	t	Lock of	n	Stop flood	ling
	Selected target	192	.168	3.3.4	4	
	- 3. Attack options Timeout 9001	HTTP Subsite		TCP / A cat is fine	UDP message too. Desudesudesu~	
	3. Attack options - Timeout 9001 80 Port	HTTP Subste / P - 10 Vat for re Threads	oly y	TCP / A cat is fine <= faster	UDP message too. Desudesudesu~ Speed slower =>	

Gambar 4. 107 *UDP flood attack* pada LOIC (Sumber : Data Olahan, 2024)

 Maka hasil menampilkan dari proses di *mikrotik* setelah dilakukan UDP flood setelah diterapkan firewall raw dimana CPU Load turun menjadi 4 %.

Resources	
Uptime:	061751
Free Memory:	58 MB
Total Memory:	320MB
CPU:	MPS24KcV7.4
CPU Count	1
CPU Frequency:	660 MHz
CPU Load:	4%
Free HDD Space:	27MB
Total HDD Size:	160 MB
Sector Writes Since Reboot	1091
Total Sector Writes:	74.067
Bad Blocks:	0.0%
Architecture Name:	snips
Board Name:	hAP Be
Version:	6.47.10 (long-term)
Build Time:	May/31(2021 0954 59
Factory Software:	6.44.5

Gambar 4. 108 Hasil pada CPU untuk serangan *UDP flood attack* pada *mikrotik* (Sumber : Data Olahan, 2024)

Table 4. 10 keamanan iptables

Hasil Setelah keamanan iptables				Deskripsi
Serangan berhasil	SYN	flood	tidak	 Menurunkan penggunaan CPU Mikrotik menjadi sekitar 0 % Dengan aturan <i>iptables</i> yang tepat, maka <i>iptables</i> akan melakukan drop pada IP penyerang dan penyerang tidak bisa melakukan serangan SYN flood
Serangan berhasil	HTTP	flood	tidak	 Menurunkan penggunaan CPU Mikrotik menjadi sekitar 2 % Dengan aturan <i>iptables</i> yang tepat, maka <i>iptables</i> akan melakukan drop pada IP penyerang dan penyerang tidak bisa melakukan serangan HTTP flood
Serangan berhasil	UDP	flood	tidak	 Menurunkan penggunaan CPU Mikrotik menjadi sekitar 4 % Dengan aturan <i>iptables</i> yang tepat, maka <i>iptables</i> akan melakukan <i>drop</i> pada IP penyerang dan penyerang tidak bisa melakukan serangan UDP flood

4.2.2.2.DDOS attack (UDP flood) sebelum penerapan firewall raw

Pada tahap ini *UDP flood attack* adalah jenis serangan penolakan layanan dimana sejumlah besar paket UDP dikirim ke *server* yang diargetkan dengan tujuan melumpuhkan kemampuan *server* dalam memproses dan merespons. Berikut adalah jenis penyerangan DDOS *Attack* yaitu UDP *flood* :

Penyerang :

LOIC (LOW ORBIT ION CANNON).

IP: 192.168.3.3.

Target

IP Lokal Web Server: 192.168.3.4.

1. Select your targe	-		Lock	-2. Re	eady?	
IP 192.168.100.	151		Lock	Lock on Sto		
Selected target —						
	102	16	0 1	00 4	151	
	192		0.	00.1	\mathbf{D}	
3. Attack options —	HTTP Subaž			TCP/		
3. Attack options — Fimeout 9001	HTTP Subsit	le		TCP / A cat is fine	UDP message too. Desudesudesu~	
3. Attack options — Timeout 9001	HTTP Subsit	te		TCP / A cat is fine	UDP message too. Desudesudesu~	
3. Attack options Timeout 9001 80 Port	HTTP Subsit	te		TCP / A cat is fine <= faster	UDP message too. Desudesudesu~ Speed slower =>	N. 15. 21 - 16. 2
3. Attack options	HTTP Subsit / - 10 Method Threads	te		TCP / A cat is fine <= faster	UDP message too. Desudesudesu~ Speed slower =>	1 10 10 1
3. Attack options Timeout 9001 000 80 000 Port Attack status	HTTP Subsit / 2 ~ 10 Method Threads	ie Vait for reply		TCP / A cat is fine <= faster	UDP message too. Desudesudesu~ Speed slower =>	
3. Attack options	HTTP Subsit / / Method Threads Connecting	te	Downloading	TCP/ A cat is fine <= faster Downloaded	UDP message too. Desudesudesu- Speed slower => Requested	Failed

Gambar 4. 109 UDP flood attack pada LOIC (Sumber : Data Olahan, 2024)

 Maka hasil menampilkan dari proses di *mikrotik* setelah dilakukan UDP flood setelah diterapkan firewall raw dimana CPU Load Naik menjadi 100 %.

Resources	
Uptime:	06:11:08
Free Memory:	53 MiB
Total Memory:	32.0 MiB
CPU:	MIPS 24Kc V7.4
CPU Count	1
CPU Frequency:	650 MHz
CPU Load:	100 %
Free HDD Space:	7.7 MB
Total HDD Size:	16.0 MiB
Sector Writes Since Reboot	1072
Total Sector Writes:	74 068
Bad Blocks:	0.0 %
Architecture Name:	smips
Board Name:	hAP lite
Version:	6.47.10 (long-term)
Build Time:	May/31/2021 09:54:59
Factory Software:	6.44.5

Gambar 4. 110 Hasil pada CPU untuk serangan *UDP flood attack* pada *mikrotik* (Sumber : Data Olahan, 2024)

Table 4. 11 Firewall raw

Hasil Setelah keamanan <i>firewall</i> raw	Deskripsi
Serangan <i>UDP</i> <i>flood</i> berhasil	 Penggunaan CPU Mikrotik naik menjadi sekitar 100 % Web server menjadi lambat (tidak responsif) Router mikrotik menjadi tidak stabil dan membutuhkan restart

4.2.2.3.DDOS Attack (SYN dan HTTP flood) setelah keamanan firewall raw

Pada tahap ini adalah jenis penyerangan DDOS *Attack* yaitu SYN *flood* dan HTTP *flood*.

Penyerang :

LOIC (LOW ORBIT ION CANNON).

IP: 192.168.3.3.

Target

IP Mikrotik: 192.168.1.2.

IP ISP pada Web Server: 192.168.100.160.

IP Private Web Server: 192.168.3.2.

4.2.2.3.1. SYN flood attack setelah penerapan firewall raw

Pada tahap ini *SYN flood attack* adalah serangan *ddos attack* dengan mengirimkan paket SYN ke target. Dengan keterangan perintah :

Gambar 4. 111 Serangan *SYN flood* (Sumber : Data Olahan, 2024)

Maka hasil menampilkan dari proses di *mikrotik* setelah dilakukan *flooding syn* setelah diterapkan *firewall raw* dimana *CPU Load* menjadi 4 %.

Resources	
Uptime:	06:1751
Free Memory:	58MB
Total Memory:	320 MB
CPU:	MIPS 24Kc V7.4
CPU Count.	1
CPU Frequency:	650 MHz
CPU Load:	4%
Free HDD Space:	7.7MB
Total HDD Size:	160 MB
Sector Writes Since Reboot	1091
Total Sector Writes:	74.087
Bad Blocks:	00%
Architecture Name:	smips
Board Name:	hAP lite
Version	6.47.10 (long-term)
Build Time:	May/31/2021 09:54:59
Factory Software:	6445

Gambar 4. 112 *Flooding Syn* setelah diterapkan *firewall raw* (Sumber : Data Olahan, 2024)

Table 4. 12 hasil firewal raw

Hasil Setelah keamanan <i>firewall raw</i>				Deskripsi
Serangan berhasil	SYN	flood	tidak	 Menurunkan penggunaan CPU Mikrotik menjadi sekitar 4 % Dengan aturan firewall RAW yang tepat, paket yang mencurigakan akan didrop sebelum diproses lebih lanjut oleh firewall, yang dapat mengurangi beban CPU secara signifikan

4.2.2.3.2. HTTP flood attack setelah penerapan firewall raw

Pada tahap ini *HTTP flood testing* adalah serangan dengan mengirimkan GET atau POST dalam jumlah besar ke *server* target. Dengan keterangan perintah :

Gambar 4. 113 Serangan *HTTP flood* (Sumber : Data Olahan, 2024)

 Maka hasil menampilkan dari proses di *mikrotik* setelah dilakukan *HTTP* flood setelah diterapkan firewall raw dimana CPU Load turun menjadi 2 %.

Resources	
Uptime	061654
Free Memory:	54MB
Total Memory:	320 MB
CPU:	MPS 24/c V7.4
CPU Count	1
CPU Frequency	650 MHz
CPU Load	2%
Free HDD Space:	77MB
Total HDD Size:	160 MB
Sector Writes Since Reboot	1091
Total Sector Writes	74 007
Bad Blocks	00%
Architecture Name:	smips
Board Name:	hAP fte
Version	6.47.10 (long-term)
Build Time:	May(31)(2021 0954 59
Factory Software:	6445

Gambar 4. 114 *HTTP flood* setelah diterapkan *firewall raw* (Sumber : Data Olahan, 2024)

Table 4. 13 firewall raw

Hasil Setelah keamanan <i>firewall raw</i>	Deskripsi
Serangan <i>HTTP flood</i> tidak berhasil	 Menurunkan penggunaan CPU Mikrotik menjadi sekitar 2 % Dengan aturan firewall RAW yang tepat, paket yang mencurigakan akan didrop sebelum diproses lebih lanjut oleh firewall, yang dapat mengurangi beban CPU secara signifikan

BAB V

PENUTUP

5.1. Kesimpulan

Berdasarkan hasil dari implementasi dan pengujian *Port Knocking* yang telah dilakukan maka dapat disimpulkan :

- 1 *Port knocking* menggunakan dengan tiga ketukan (ICMP, *Telnet*, dan SSH) pada *MikroTik RouterBoard* dapat membantu menyembunyikan *port* terbuka dari pengguna yang tidak sah dan mengurangi risiko akses tidak diizinkan.
- 2 Penerapan *firewall raw* pada *MikroTik* untuk melindungi *web server* dari serangan SYN *flood* dan HTTP *flood* memberikan lapisan keamanan tambahan. Pengujian dengan LOIC menunjukkan bahwa langkah-langkah ini efektif dalam mengurangi dampak dari serangan tersebut.
- 3 Penerapan pada *iptables* pada *Mikrotik* dapat melindungi alamat IP lokal dari *web server* dari serangan alamat IP penyerang jika alamat penyerang diketahui dan dilakukan *drop* menggunakan *iptables*. Maka serangan *DDOS attack* yang dilakukan penyerang bisa teratasi.

5.2. Saran

Berdasarkan dari hasil implementasi dan pengujian *port knocking* menggunakan *Mikrotik Routerboard RB941-2ND* masih memiliki kinerja terbatas sehingga membuat kurang ideal untuk lingkungan yang memilki banyak perangkat terhubung. Kemudian hanya memiliki *4 port ethernet* dan jangkauan sinyal *Wi-Fi* terbatas, tidak memiliki *port* USB. Sehingga saran jika ingin melakukan penguijan pada keamanan *Mikrotik* sebaiknya melakukan pengujian dengan *Mikrotik Routerboard* yang lebih terbaru dengan kinerja, *port ethernet* yang lebih banyak, Jangkauan *Wi-Fi* yang cukup luas dan memiliki *port* USB. Contohnya *MikroTik RB4011 (RB4011iGS+RM)*.

DAFTAR PUSTAKA

- Afdhol. P. Y., M. N., Anggraini Samudra, A., & Trisetyowati Untari, R. (2023).
 Perancangan Jaringan Komputer Menggunakan Metode Failover. JATI (Jurnal Mahasiswa Teknik Informatika), 7(3), 1474–1481.
 https://doi.org/10.36040/jati.v7i3.7313
- Amarudin, A. (2018). Desain Keamanan Jaringan Pada Mikrotik Router OS Menggunakan Metode Port Knocking. Jurnal Teknoinfo, 12(2), 72. https://doi.org/10.33365/jti.v12i2.121
- Anas, M. A., Soepriyanto, Y., & Susilaningsih. (2018). PENGEMBANGAN MULTIMEDIA TUTORIAL TOPOLOGI JARINGAN UNTUK SMK KELAS X TEKNIK KOMPUTER DAN JARINGAN Muchammad Azwar Anas, Yerry Soepriyanto, Susilaningsih. *Multimedia Tutorial*, 1(4), 307–314.
- Blaise, A., Bouet, M., Conan, V., & Secci, S. (2020). Detection of unknown attacks : an unsupervised port-based approach \$.
- Ernawati, R., Ruslianto, I., & Bahri, S. (2022). Implementasi Metode Port Knocking Pada Sistem Keamanan Server Ubuntu Virtual Berbasis Web Monitoring. *Coding: Jurnal Komputer Dan Aplikasi*, 10(01), 158–169. https://jurnal.untan.ac.id/index.php/jcskommipa/article/view/54226
- Insani, P. P., Kanedi, I., & Akbar, A. Al. (2023). Implementation of Snort as a Wireless Network Security Detection Tool Using Linux Ubuntu Implementasi Snort Sebagai Alat Pendeteksi Keamanan Jaringan Wireless Menggunakan Linux Ubuntu. 3(2), 443–458.
- Keamanan, O., Komputer, J., Jamalul, A., & Nurdiawan, O. (2022). METODE KNOCKING PORT BERBASIS MIKROTIK (Studi Kasus : CV. Mitra Indexindo Pratama). 6(2), 560–570.

- Mustaqim, T. M. W. (2022). IMPLEMENTASI MANAGEMEN BANDWIDTH MENGGUNAKAN METODE QUEUE TREE DI PT. JAWA POS NATIONAL NETWORK MEDIALINK (Cabang Karimun). *Jurnal TIKAR*, *3*(2), 118–130.
- Na, D. E. C., & Hipertensiva, C. (n.d.). (2020) *Intrusion Detection & Prevention System* dan Keamanan Jaringan Pada Mikrotik Router
- Novianto, D., Tommy, L., & Setiawan Japriadi, Y. (2021). Implementasi Sistem Keamanan Jaringan Menggunakan Metode Simple Port Knocking Pada Router Berbasis Mikrotik. *Jurnal Komitek*, 1(2), 407–417. https://doi.org/10.53697/jkomitek.v1i2
- Penerbit Unpri Press Tahun Terbit. (2024). Modul Pengajaran Jaringan Komputer.
- Putri, I., Agita, A., & Soim, S. (2023). Implementasi Port Knocking, Port Blocking Pada Keamanan Jaringan Komputer Berbasis Mikrotik. 6(3), 125–130.
- Rosaly, R., & Prasetyo, A. (2019). Pengertian Flowchart Beserta Fungsi dan Simbolsimbol Flowchart yang Paling Umum Digunakan. *Https://Www.Nesabamedia.Com*, 2. https://www.nesabamedia.com/pengertianflowchart/https://www.nesabamedia.com/pengertian-flowchart/
- Santoso, N. A., Affandi, K. B., & Kurniawan, R. D. (2022). Implementasi Keamanan Jaringan Menggunakan Port Knocking Network Security Implementation Using Port Knocking. 2(2), 90–95. https://doi.org/10.25008/janitra.v2i2.156
- Saputro, A., Saputro, N., & Wijayanto, H. (2020). Metode Demilitarized Zone dan Port Knocking untuk Keamanan Jaringan Komputer. *CyberSecurity Dan Forensik Digital*, 3(2), 22–27.
- Setyowibowo, S., & Moka, N. (2022). Keamanan Jaringan Hotspot Dengan Simple Port Knocking Dan Automated Backup Menggunakan Mikrotik. *Jurnal Ilmiah Komputasi*, 21(4), 541–552. https://doi.org/10.32409/jikstik.21.4.3109

Suryana, O. (2018). Server dan Web Server. ResearchGate, August, 14–23.

- Yudi mulyanto, M. Julkarnain, & Jabi Afahar, A. (2021). Implementasi Port Knocking Untuk Keamanan Jaringan Smkn 1 Sumbawa Besar. Jurnal Informatika Teknologi Dan Sains, 3(2), 326–335. https://doi.org/10.51401/jinteks.v3i2.1016
- (Ernawati et al., 2022)Ernawati, R., Ruslianto, I., & Bahri, S. (2022). Implementasi Metode Port Knocking Pada Sistem Keamanan Server Ubuntu Virtual Berbasis Web Monitoring. *Coding : Jurnal Komputer Dan Aplikasi*, *10*(01), 158–169. https://jurnal.untan.ac.id/index.php/jcskommipa/article/view/54226

LAMPIRAN

Lampiran 1 Lembar Asistensi Bimbingan

FORM LEMBAR ASISTENSI BIMBINGAN JURUSAN TEKNIK INFORMATIKA POLITEKNIK NEGERI BENGKALIS TAHUN AJARAN 2023/2024

Nama NIM Judul TA

.

: Mutiara Kristina Br Sinaga : 6103211479 Dosen Pembimbing : Wahyat, M.Kom : Implementasi Port Knocking Pada Laboratorium Jurusan Teknik

Informatika (Studi Kasus: Laboratorium High Performance Computing)

No	Tanggal	Kegiatan	Tanda Tangan Pembimbing
ŀ	04 Juni 2024	-membernean arahan untuk melan- Jutkan progress Bab 4	F
2.	07 JUNI. 2024	-languthan unlik marancang militotoke (port knocking)	Ŧ
3	21 Jun 1 2024	-Dibertain avahan untuk memperbalki. 1p 00011155 agar terhubung Amaan mikotek	F
4.	03 Juii' 2024	- Membral Give Dosen intre Mahasiswa Oringan sehrap ver - Kali-linux Doos Oringan heing port scanning Oringan nimap - Kana wown bandwillb	F
5.	10 Juli 2024	Menceba Pengusian Port scanning 8	F
6.	26 Juli 2029	- pengusran	F
7.	1 Asustus 2029		f-
8.	6 Asistus 2029	ACC Seminar Tugas Akhir	F

Lampiran 2 Saran dan Perbaikan Sidang TA oleh Dosen Penguji 1

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN POLITEKNIK NEGERI BENGKALIS JURUSAN TEKNIK INFORMATIKA PROGRAM STUDI D3 TEKNIK INFORMATIKA Jl. Bathin Alam, Sungai Alam Bengkalis - Riau 28714 Telepon (0766) 24566, Faximile (0766) 8001000 Laman: Http//www.polbeng.ac.id FORMULIR Tahun : 2023 / 2024 SARAN DAN PERBAIKAN SIDANG TA SARAN DAN PERBAIKAN SIDANG TA Pelaksanaan Seminar TA Dari Mahasiswa : Mutiara Kristina br Sinaga Nama NIM 6103211479 : DIII - Teknik Informatika Prodi : Implementasi Port Knocking Pada Laboratorium Jurusan Teknik Informatika Judul (Studi Kasus : Laboratorium High Performance Computing) Nama Dosen (Penguji I) : Lipantri Mashur Gultom, M.Kom Materi Perbaikan Mas u CAOU Or Noc Pengesahan Dosen Penguji I Sebelum perbaikan Setelah perbaikan Tanggal Tanggal 16-0-02 0 -1 2020 Tanda Tangan Tanda Tangan CATATAN: 1. Form ini mohon dikembalikan ke koordinator TA jika udah selesai melaksanakan Sidang TA.

103

CS Dipindai dengan CamScanner

÷

Lampiran 3 Saran dan Perbaikan Sidang TA oleh Dosen Penguji 2

	KEMENTERIAN PENDID POLITEKNIK N JURUSAN TEKN PROGRAM STUDI D3 Jl. Bathin Alam, Sungai / Telepon (0766) 24566, Laman: Http//v	MKAN DAN KEBUDAYAAN EGERI BENGKALIS VIK INFORMATIKA TEKNIK INFORMATIKA Alam Bengkalis - Riau 287 , Faximile (0766) 8001000 www.polbeng.ac.id	14
MULIR AN DAN PER	BAIKAN SIDANG TA		Tahun : 2023 / 2024
	SARAN DAN PER	BAIKAN SIDANG TA	
Peleksensen Se	minar TA Dari Mahasiswa :		
Nama	: Mutiara Kristina br Sinaga		
NIM	: 6103211479		
Prodi	: DIII – Teknik Informatika		
Judul	: Implementasi Port Knocking	g Pada Laboratorium Jurusan T	eknik Informatika
	(Studi Kasus : Laboratorium	High Performance Computing	g)
	Pengesahar	n Dosen Penguji II	
Sebelum pert	Pengesahar aikan	n Dosen Penguji II Setelah perbaikan	<u>15-08-9021</u>
Sebelum pert Tanggal Tanda Tanga	Pengesahar aikan 0 O O O - 1 D	n Dosen Penguji II Setelah perbaikan Tanggal Tanda Tangan	15 =08- 2021 (1) mmf

Lampiran 4 Saran dan Perbaikan Sidang TA oleh Dosen Penguji 3

	KEMENTERIAN PEN POLITEKNII JURUSAN TE PROGRAM STUDI Jl. Bathin Alam, Sung Telepon (0766) 243 Laman: Htt	DIDIKAN DAN KEBUDAYA K NEGERI BENGKALIS KNIK INFORMATIKA D3 TEKNIK INFORMATII ai Alam Bengkalis - Riau 2 566, Faximile (0766) 800100 p//www.polbeng.ac.id	AN KA 8714 20
ORMULIR	EDRAIKAN SIDANC TA		Tahun : 2023 / 2024
	SARAN DAN P	ERBAIKAN SIDANG TA	<u></u>
Pelaksanaan	Seminar TA Dari Mahasiswa :		
Nama	: Mutiara Kristina br Sina	aga	
NIM	: 6103211479		
Prodi	: DIII – Teknik Informati	ka	m1 1 1 6
Judul	: Implementasi Port Knoch	king Pada Laboratorium Jurusar	n Teknik Informatika
2. 4	opolog 19 d	u) u - di	4
3. Pd 60	Bal 10, 600	iakan Boh	ersa Lapoen
3. Pd 60	Bat 10, 600	rakan (Soh	ersa Lapoen
3. Pd	Bal 10, 600 Near bhs form Pengesah	an Dosen Penguji III Setelah perbaikan	2199 Lapoen
3. Pd bu	Bat 10, 600 Near blus form Pengesah rbaikan	aka Soh	16/BY 24
3 · Pd 500 Sebelum pe Tanggal Tanda Tang	Pengesah rbaikan gan	an Dosen Penguji III Setolah perbaikan Tanggal Tanda Tangan	16/ 5/ 24

A

Lampiran 5 Saran dan Perbaikan Sidang TA oleh Dosen Pembimbing

	Jl. Bathin Alam, Sungai Telepon (0766) 24566 Laman: Http//	Alam Bengkalis - Riau 5, Faximile (0766) 8001 /www.polbeng.ac.id	28714
MULIR AN DAN PERI	BAIKAN SIDANG TA		Tahun : 2023 / 2024
	SARAN DAN PEI	RBAIKAN SIDANG T	TA .
Pelaksanaan Ser	ninar TA Dari Mahasiswa :		
Nama	· Mutiara Kristina br Sinaga	1	
NIM	6103211479		
Prodi	: DIII - Teknik Informatika		
Judul	: Implementasi Port Knockin	ng Pada Laboratorium Juru	san Teknik Informatika
	(Studi Kasus : Laboratoriun	n High Performance Comp	outing)
Nama Dosen (P Materi Perbaika APast Past Past Past Past Past	embimbing): Wahyat, M.Kom Isan Jic ternatike Ilan Ta terborc Sco. perloaiks Su5.i	a fenucisan Norwar G	Wazib Mengikuti ztatan Tim Dare
Nama Dosen (P Materi Perbaika 1	embimbing): Wahyat, M.Kom Isan Jirtematike luan Ta terbari San perbasiki Su5.i	a fenutisan Jesuar G	Wazib Mengikuti ztatan Tim Dare
Nama Dosen (P Materi Perbaika 1	embimbing): Wahyat, M.Kom San Jirtematike San Parloaiki Su5 i Pengesahan	Dosen Pembimbing	Wazib Mengikuti ztatan Tim Dare
Nama Dosen (P Materi Perbaika 1	embimbing): Wahyat, M.Kom San Jir terhori San Perloaiki Su5 i Pengesahan ikan	Dosen Pembimbing Setelah perbaikan	Wazib Mengikuti ztatan Tim Dare
Nama Dosen (P Materi Perbaika 1	embimbing): Wahyat, M.Kom San Jir ternatike San Perloaiki SUS i Pengesahan ikan 8 ARUSEUS 2024	Dosen Pembimbing Setelah perbaikan Tanggal	Unoib mensikuti atatan Tim Dare

.TATAN: 1. Form ini mohon dikembalikan ke koordinator TA jika udah selesai melaksanakan Sidang TA.

S Dipindai dengan CamScanner