Analisis Sentimen Kenaikan BBM Pada Twitter Menggunakan Metode Support Vector Machine (SVM)

Yulianti, Devi (2023) Analisis Sentimen Kenaikan BBM Pada Twitter Menggunakan Metode Support Vector Machine (SVM). Undergraduate thesis, Politeknik Negeri Bengkalis.

[img]
Preview
Text (Abstract)
1. TA-6304191178-Abstract.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (13kB) | Preview
[img]
Preview
Text (Bab I Pendahuluan)
2. TA-6304191178-Bab I Pendahuluan.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (112kB) | Preview
[img]
Preview
Text (Daftar Pustaka)
3. TA-6304191178-Daftar Pustaka.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (116kB) | Preview
[img] Text (Full Text)
4. TA-6304191178-Full Text.pdf - Submitted Version
Restricted to Repository staff only
Available under License Creative Commons Attribution Share Alike.

Download (1MB)

Abstract

Social Media Twitter has a large number of users in Indonesia. These users often generate a lot of tweets from various things such as: Entertainment, education, politics, and also work. One of the issues that has become a trending topic on Twitter in 2022 is the increase in fuel prices. This problem makes Twitter users make various tweets regarding the increase in fuel prices. For its classification, it uses the Support Vector Machine (SVM) method, which is one of the methods in Supervised Learning that is used to carry out classification. In sentiment analysis using the support vectore machine method, it is done by classifying sentiment into positive sentiment or negative sentiment. The level of accuracy of sentiment analysis on fuel price increases using the support vectore machine method is 83% using 800 training data and 200 test data.

Item Type: Thesis (Undergraduate)
Contributors:
ContributionContributorsEmailNIDN/NIDK
Thesis advisorRatnawati, Fajarfajar@polbeng.ac.idNIDN0012128304
Uncontrolled Keywords: Twitter, SVM, Sentiment Analysis
Subjects: 410 ILMU TEKNIK > 450 TEKNIK ELEKTRO DAN INFORMATIKA > 463 Teknik Perangkat Lunak
Divisions: Jurusan Teknik Informatika > Sarjana Terapan Rekayasa Perangkat Lunak > TUGAS AKHIR
Depositing User: RPL A
Date Deposited: 12 Sep 2023 11:04
Last Modified: 12 Sep 2023 11:04
URI: http://eprints.polbeng.ac.id/id/eprint/10639

Actions (login required)

View Item View Item