Sistem Pakar Diagnosa Penyakit Gigi Menggunakan Metode Forward Chaining dengan Probabilitas Teorema Bayes

Hafizah, Hafizah (2025) Sistem Pakar Diagnosa Penyakit Gigi Menggunakan Metode Forward Chaining dengan Probabilitas Teorema Bayes. Other thesis, Politeknik Negeri Bengkalis.

[thumbnail of Abstrak] Text (Abstrak)
1. TA-6304211352-Abstrak.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (253kB)
[thumbnail of Bab I Pendahuluan] Text (Bab I Pendahuluan)
2. TA-6304211352-Bab I Pendahuluan.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (237kB)
[thumbnail of Daftar Pustaka] Text (Daftar Pustaka)
3. TA-6304211352-Daftar Pustaka.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (212kB)
[thumbnail of Full Text] Text (Full Text)
4. TA-6304211352-Full Text.pdf - Submitted Version
Restricted to Registered users only
Available under License Creative Commons Attribution Share Alike.

Download (5MB) | Request a copy

Abstract

Dental diseases are often not detected early due to a lack of public awareness and limited access to healthcare facilities. Many people only have their teeth checked when the condition has become severe, making treatment more difficult and more costly. To address this issue, this study aims to develop an expert system capable of independently diagnosing dental diseases. The system uses Forward Chaining to match symptoms with diagnostic rules established in the knowledge base, allowing it to determine possible diseases step-by-step based on user input. In addition, Bayes’ Theorem is used to calculate the probability of each potential disease, producing a confidence level for the diagnosis. The system is built using PHP Laravel and MySQL, and tested with black-box testing to ensure its functionality. Accuracy testing by comparing the system’s diagnosis results with experts shows an accuracy rate of 90%. This indicates that the method used can provide fairly accurate predictions. The system is expected to help the public recognize dental diseases earlier before consulting a dentist.

Item Type: Thesis (Other)
Uncontrolled Keywords: Expert System, Forward Chaining, Bayes' Theorem, Dental Disease Diagnosis, Web
Subjects: 000 – UMUM, ILMU KOMPUTER, DAN INFORMASI > 005 – Pemrograman, Perangkat Lunak > 005.2 Sistem dan Operasi Komputer
000 – UMUM, ILMU KOMPUTER, DAN INFORMASI > 004 – Ilmu Komputer > 004.4 – Sistem Operasi
000 – UMUM, ILMU KOMPUTER, DAN INFORMASI > 004 – Ilmu Komputer > 004.3 – Jaringan Komputer dan Komunikasi
Divisions: Jurusan Teknik Informatika > Sarjana Terapan (D-IV) Rekayasa Perangkat Lunak > SKRIPSI
Depositing User: D-IV Rekayasa Perangkat Lunak Kelas A
Date Deposited: 07 Aug 2025 06:16
Last Modified: 07 Aug 2025 06:16
URI: https://eprints.polbeng.ac.id/id/eprint/1177

Actions (login required)

View Item
View Item