Penerapan Face Recognition dengan Model Deep Neural Network pada Sistem Smart Door Lock

Nur, Ismadi Rahendra (2025) Penerapan Face Recognition dengan Model Deep Neural Network pada Sistem Smart Door Lock. Diploma thesis, Politeknik Negeri Bengkalis.

[thumbnail of Abstract] Text (Abstract)
TA-6304211334-Abstract.pdf - Submitted Version
Restricted to Registered users only
Available under License Creative Commons Attribution Share Alike.

Download (259kB) | Request a copy
[thumbnail of Bab 1 Pendahuluan] Text (Bab 1 Pendahuluan)
TA-6304211334-Bab I Pendahuluan.pdf - Submitted Version
Restricted to Registered users only
Available under License Creative Commons Attribution Share Alike.

Download (791kB) | Request a copy
[thumbnail of Daftar Pustaka] Text (Daftar Pustaka)
TA-6304211334-Daftar Pustaka.pdf - Submitted Version
Restricted to Registered users only
Available under License Creative Commons Attribution Share Alike.

Download (1MB) | Request a copy
[thumbnail of Full Text] Text (Full Text)
TA-6304211334-Full Text.pdf - Submitted Version
Restricted to Registered users only
Available under License Creative Commons Attribution Share Alike.

Download (2MB) | Request a copy

Abstract

The advancements in artificial intelligence and IoT have created significant opportunities to enhance home security systems. This research proposes a Smart Door Lock system based on Face Recognition, utilizing a Deep Neural Network (DNN) integrated with an ESP32-CAM and a Solenoid Door Lock. The system employs MTCNN for face detection and compares facial embeddings using Euclidean Distance, along with adjustments to the similarity threshold. Testing results demonstrate that the system achieves an average accuracy of 84%, with evaluation metrics of 95% Precision, 85% Recall, and an F1-Score of 89.72%. Adjusting the similarity threshold from 0.60 to 0.28 significantly reduces the false positive rate—from 7 to 1 under certain conditions—although overall tests indicate a false positive rate of approximately 5%. Additionally, the system logs access events, enabling homeowners to monitor door access in real time.

Item Type: Thesis (Diploma)
Uncontrolled Keywords: Face Recognition, Deep Neural Network, Smart Door Lock, IoT, Keamanan Akses
Subjects: 000 – UMUM, ILMU KOMPUTER, DAN INFORMASI > 005 – Pemrograman, Perangkat Lunak > 005.3 Perangkat Lunak (Software)
000 – UMUM, ILMU KOMPUTER, DAN INFORMASI > 005 – Pemrograman, Perangkat Lunak > 005.9 Kecerdasan Buatan (AI), Komputasi Kognitif
000 – UMUM, ILMU KOMPUTER, DAN INFORMASI > 005 – Pemrograman, Perangkat Lunak > 005.7 Jaringan dan Komunikasi Data
Divisions: Jurusan Teknik Informatika > Sarjana Terapan (D-IV) Rekayasa Perangkat Lunak > SKRIPSI
Depositing User: D-IV Rekayasa Perangkat Lunak Kelas A
Date Deposited: 13 Aug 2025 08:19
Last Modified: 13 Aug 2025 08:19
URI: https://eprints.polbeng.ac.id/id/eprint/1296

Actions (login required)

View Item
View Item