Sistem Deteksi Intrusi Menggunakan Teknik Undersampling Enn dan machine learning Random forest untuk Mengatasi Ketidak seimbangan

Miftahullah, Miftahullah (2025) Sistem Deteksi Intrusi Menggunakan Teknik Undersampling Enn dan machine learning Random forest untuk Mengatasi Ketidak seimbangan. Diploma thesis, Politeknik Negeri Bengkalis.

[thumbnail of Abstract] Text (Abstract)
TA-6103221533-Abstrak.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (216kB)
[thumbnail of Bab I Pendahuluan] Text (Bab I Pendahuluan)
TA-6103221533-Bab I Pendahuluan.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (227kB)
[thumbnail of Daftar Pustaka] Text (Daftar Pustaka)
TA-6103221533-Daftar Pustaka.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (240kB)
[thumbnail of Full Text] Text (Full Text)
TA-6103221533-Full Text.pdf - Submitted Version
Restricted to Registered users only
Available under License Creative Commons Attribution Share Alike.

Download (2MB) | Request a copy

Abstract

Data imbalance in intrusion detection systems can cause the model to overlook attack types with limited data samples. This study develops an intrusion detection system based on the Random Forest algorithm with a data balancing approach using Edited Nearest Neighbours (ENN) on the CICIDS2017 dataset. The research stages include preprocessing, normalization, feature selection, and the application of balancing methods. Initial results indicate that the use of ENN alone does not fully balance the class distribution. Therefore, it is recommended to implement a hybrid SMOTE-ENN method, which has proven more effective in improving class distribution and enhancing the detection of minority attacks. Model evaluation shows a significant performance improvement, with accuracy reaching 98.66% and precision, recall, and F1-score values exceeding 98% across various data-splitting scenarios.

Item Type: Thesis (Diploma)
Uncontrolled Keywords: ENN, SMOTE-ENN, Random Forest, CICIDS2017, Intrusion Detection, Data Imbalance.
Subjects: 600 – ILMU TEKNIK DAN ILMU TERAPAN > 600 – Teknologi dan Ilmu Terapan (Umum) > 602 – Metode dan Alat Teknologi (Perancangan, Teknik, dan Praktek)
Divisions: Jurusan Teknik Informatika > Diploma Tiga (D-III) Teknik Informatika > TUGAS AKHIR
Depositing User: D-III Teknik Informatika Kelas B
Date Deposited: 15 Aug 2025 02:31
Last Modified: 15 Aug 2025 02:31
URI: https://eprints.polbeng.ac.id/id/eprint/1608

Actions (login required)

View Item
View Item