Perbandingan Algoritma CNN Dan Naïve Bayes Dalam Analisis Sentimen Pada Twitter Terhadap Genosida Israel Ke Palestin E

Putri, Rahima Trias (2025) Perbandingan Algoritma CNN Dan Naïve Bayes Dalam Analisis Sentimen Pada Twitter Terhadap Genosida Israel Ke Palestin E. Other thesis, Politeknik Negeri Bengkalis.

[thumbnail of Bab I Pendahuluan] Text (Bab I Pendahuluan)
SKRIPSI-6304211381-Abstract.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (29kB)
[thumbnail of Bab I Pendahuluan] Text (Bab I Pendahuluan)
SKRIPSI-6304211381- Bab 1 Pendahuluan.pdf
Available under License Creative Commons Attribution Share Alike.

Download (103kB)
[thumbnail of Daftar Pustaka] Text (Daftar Pustaka)
SKRIPSI-6304211381-Daftar Pustaka.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (99kB)
[thumbnail of Full Text] Text (Full Text)
SKRIPSI-6304211381-Full Text.pdf - Submitted Version
Restricted to Registered users only
Available under License Creative Commons Attribution Share Alike.

Download (1MB) | Request a copy

Abstract

The development of social media, particularly Twitter, has become a primary platform for public opinion expression on issues such as the Israeli genocide against Palestine. Manual sentiment analysis of a large volume of tweets is time-consuming, thus requiring automatic methods using machine learning. This study compares the performance of Convolutional Neural Network (CNN) and Naïve Bayes algorithms in classifying positive and negative sentiments in public opinions on this issue. Experimental results show that CNN achieves a higher accuracy of 80%, compared to 78% by Naïve Bayes. Moreover, CNN outperforms Naïve Bayes in recognizing positive sentiments, demonstrated by higher recall and f1-score values, indicating a more balanced sentiment classification. This research is expected to contribute as a reference in social media-based sentiment analysis and serve as a basis for further development of more effective sentiment classification models.

Item Type: Thesis (Other)
Uncontrolled Keywords: Twitter, Sentiment Analysis, Convolutional Neural Network, Naïve Bayes, Genocide, Machine Learning
Subjects: 000 – UMUM, ILMU KOMPUTER, DAN INFORMASI > 006 – Kecerdasan Buatan, Grafika Komputer
Divisions: Jurusan Teknik Informatika > Sarjana Terapan (D-IV) Rekayasa Perangkat Lunak > SKRIPSI
Depositing User: D-IV Rekayasa Perangkat Lunak Kelas B
Date Deposited: 18 Aug 2025 14:41
Last Modified: 18 Aug 2025 14:41
URI: https://eprints.polbeng.ac.id/id/eprint/1924

Actions (login required)

View Item
View Item