Analisis dan Pemetaan Lokasi Rawan Kecelakaan (Black Spot) di Kecamatan Tanah Putih Metode EAN,UCL Berbasis Data Spasial Web GIS

Suhada, Teja (2025) Analisis dan Pemetaan Lokasi Rawan Kecelakaan (Black Spot) di Kecamatan Tanah Putih Metode EAN,UCL Berbasis Data Spasial Web GIS. Other thesis, Politeknik Negeri Bengkalis.

Warning
There is a more recent version of this item available.
[thumbnail of Abstract] Text (Abstract)
1.TA-4204211404-Abstract.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (185kB)
[thumbnail of Bab I Pendahuluan] Text (Bab I Pendahuluan)
2.TA-4204211404-Bab I Pendahuluan.pdf
Available under License Creative Commons Attribution Share Alike.

Download (393kB)
[thumbnail of Daftar Pustaka] Text (Daftar Pustaka)
3.TA-4204211404-Daftar Pustaka.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.

Download (399kB)
[thumbnail of Full Text] Text (Full Text)
4.TA-4204211404-Full Text.pdf - Submitted Version
Restricted to Registered users only
Available under License Creative Commons Attribution Share Alike.

Download (6MB) | Request a copy

Abstract

Tanah Putih Sub-district in Rokan Hilir Regency is a strategic area traversed by the Trans-Sumatran Highway, a national route with the highest vehicular traffic growth rate in Indonesia. This condition makes the area highly susceptible to traffic accidents. This research aims to analyze and map accident-prone locations (black spots) using the Equivalent Accident Number (EAN) and Upper Control Limit (UCL) methods, employing spatial data approaches integrated into a Web Geographic Information System (Web GIS). The analyzed accident data covers a five-year period
(2019-2023) sourced from the Rokan Hilir Police Department (Polres Rokan Hilir). The study findings indicate that the majority of accidents involve collisions between motorcycles and heavy vehicles, with the highest incidence recorded in 2022. The EAN method is utilized to assess accident severity, whereas the UCL method is employed to identify road segments with significant accident risk. The analysis results are subsequently visualized using a Web GIS application, providing an informative and accessible digital representation of the distribution of accident prone locations. This study contributes significantly to local government and related stakeholders by aiding the formulation of traffic safety policies, accident risk mitigation planning, and improving public awareness regarding traffic safety.

Item Type: Thesis (Other)
Subjects: 600 – ILMU TEKNIK DAN ILMU TERAPAN > 624 – Teknik Sipil dan Konstruksi > 624.4 – Konstruksi Jalan dan Jalan Raya
Divisions: Jurusan Teknik Sipil > Sarjana Terapan (D-IV) Teknik Perancangan Jalan dan Jembatan > SKRIPSI
Depositing User: D-IV TPJJ A 2021
Date Deposited: 22 Aug 2025 08:23
Last Modified: 22 Aug 2025 08:23
URI: https://eprints.polbeng.ac.id/id/eprint/2307

Available Versions of this Item

Actions (login required)

View Item
View Item