Islami, Aidil Dzakwan Alfaris (2025) Analisis Implementasi Algoritma Learning Vector Quantization 3 Terhadap Klasifikasi Penentuan Penerima Bantuan Langsung Tunai Desa. Other thesis, Politeknik Negeri Bengkalis.
![[thumbnail of Abstract]](https://eprints.polbeng.ac.id/style/images/fileicons/text.png)
TA-6304211407-Abtract.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.
Download (326kB)
![[thumbnail of Bab I Pendahuluan]](https://eprints.polbeng.ac.id/style/images/fileicons/text.png)
TA-6304211407-Bab I Pendahuluan.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.
Download (611kB)
![[thumbnail of Daftar Pustaka]](https://eprints.polbeng.ac.id/style/images/fileicons/text.png)
TA-6304211407-Daftar Pustaka.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.
Download (506kB)
![[thumbnail of Full Text]](https://eprints.polbeng.ac.id/style/images/fileicons/text.png)
TA-6304211407-Full Text.pdf - Submitted Version
Restricted to Registered users only
Available under License Creative Commons Attribution Share Alike.
Download (4MB) | Request a copy
Abstract
The Direct Cash Assistance (BLT) program in Indonesia aims to reduce poverty and improve welfare. However, the recipient selection process often faces social bias, undermining objectivity. This study develops a classification system using the Learning Vector Quantization (LVQ) 3.0 algorithm to support a fairer selection process. The data includes 100 potential recipients from Kelapapati Village, divided into 80% for training and 20% for testing. Parameters include age, education level, home ownership, electricity usage, and water source. Evaluation was conducted using K-Fold Cross Validation to assess algorithm accuracy. The system was tested with various Learning Rate values (0.01; 0.025; 0.05; 0.075; and 0.1) and Window values (0.2; 0.3; 0.4; and 0.5). Results indicate that the LVQ 3.0 algorithm effectively classifies data with 86,22% accuracy, making it suitable for BLT recipient selection. Adding more diverse data is recommended to enhance the system's pattern recognition capability.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Direct Cash Assistance, Data Classification, K-Fold Cross Validation, Learning Vector Quantization 3.0, Poverty Alleviation. |
Subjects: | 000 – UMUM, ILMU KOMPUTER, DAN INFORMASI > 005 – Pemrograman, Perangkat Lunak > 005.9 Kecerdasan Buatan (AI), Komputasi Kognitif |
Divisions: | Jurusan Teknik Informatika > Sarjana Terapan (D-IV) Rekayasa Perangkat Lunak > SKRIPSI |
Depositing User: | D-IV Rekayasa Perangkat Lunak Kelas C |
Date Deposited: | 29 Jul 2025 01:36 |
Last Modified: | 29 Jul 2025 01:36 |
URI: | https://eprints.polbeng.ac.id/id/eprint/909 |