Raff, Hafizah Wadji (2025) Penerapan Algoritma Random Forest Pada Analisis Sentimen Ulasan Pengguna Terhadap Aplikasi Video Editing Di Playstore. Other thesis, Politeknik Negeri Bengkalis.
![[thumbnail of Abstract]](https://eprints.polbeng.ac.id/style/images/fileicons/text.png)
TA-6304211378-Abstract.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.
Download (100kB)
![[thumbnail of Bab I Pendahuluan]](https://eprints.polbeng.ac.id/style/images/fileicons/text.png)
TA-6304211378-Bab I Pendahuluan.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.
Download (121kB)
![[thumbnail of Daftar Pustaka]](https://eprints.polbeng.ac.id/style/images/fileicons/text.png)
TA-6304211378-Daftar Pustaka.pdf - Submitted Version
Available under License Creative Commons Attribution Share Alike.
Download (116kB)
![[thumbnail of Full Text]](https://eprints.polbeng.ac.id/style/images/fileicons/text.png)
TA-6304211378-Full Text22.pdf - Submitted Version
Restricted to Registered users only
Available under License Creative Commons Attribution Share Alike.
Download (3MB) | Request a copy
Abstract
The advancement of technology and the use of video editing applications on Google Play Store have created a need to effectively understand user reviews. This study aims to analyze the sentiment of user reviews for video editing applications such as CapCut, InShot, KineMaster, and Filmora using the Random Forest algorithm. User review data was collected through web scraping, then processed using the TF IDF technique for word weighting, and divided into 80% training data and 20% testing data. The model evaluation was conducted using accuracy, precision, recall, and F1-score metrics. The results of the study show that the Random Forest algorithm can classify user sentiments with a fairly high accuracy of 86% using a dataset of 4000 data points for each application. The conclusion of this study is that the Random Forest algorithm performs well in classifying user review data for video editing applications on the PlayStore.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Sentiment Analysis, Random Forest, TF-IDF, Video Editing Applications, Play Store. |
Subjects: | 000 – UMUM, ILMU KOMPUTER, DAN INFORMASI > 005 – Pemrograman, Perangkat Lunak > 005.3 Perangkat Lunak (Software) |
Divisions: | Jurusan Teknik Informatika > Sarjana Terapan (D-IV) Rekayasa Perangkat Lunak > SKRIPSI |
Depositing User: | D-IV Rekayasa Perangkat Lunak Kelas B |
Date Deposited: | 30 Jul 2025 03:31 |
Last Modified: | 30 Jul 2025 03:31 |
URI: | https://eprints.polbeng.ac.id/id/eprint/983 |